Wiesner Quantum Money: Difference between revisions

Jump to navigation Jump to search
m
no edit summary
No edit summary
mNo edit summary
Line 1: Line 1:
The classical money scheme involves the Bank distributing notes to the untrusted users. Each note has a unique serial number attached to it and this number provides a basis for the verification of the note when the user wants to use it for transaction. However in the classical world, nothing prevents a user with sufficient resources to be able to forge the note and create more notes than what he originally had in possession. In the 1980s, Wiesner proposed the idea of quantum money to create unforgeable bank notes. The unforgeability of the note relied on the no-cloning property of quantum mechanics. In the Wiesner scheme, the bank notes are several
The classical money scheme involves the Bank distributing notes to untrusted users. Each note has a unique serial number attached to it and this number provides a basis for the verification of the note when the user wants to use it for a transaction. However, in the classical world, nothing prevents a user with sufficient resources to be able to forge the note and create more notes than what he originally had in possession. In the 1980s, Wiesner proposed the idea of quantum money to create unforgeable bank notes. The unforgeability of the note relied on the no-cloning property of quantum mechanics. In this [http://users.cms.caltech.edu/~vidick/teaching/120_qcrypto/wiesner.pdf example protocol], the banknotes are several
BB84 states prepared by the Bank, who then distributes them to the untrusted users. When the user needs to carry out a transaction with his note, he sends it to the Bank for verification, who then authenticates the validity of the note. Based on the no-cloning property of quantum mechanics, Wiesner showed an information theoretic security against a note forger.  
BB84 states prepared by the Bank, who then distributes them to the untrusted users. When the user needs to carry out a transaction with his note, he sends it to the Bank for verification, who then authenticates the validity of the note. Based on the no-cloning property of quantum mechanics, Wiesner showed information-theoretic security against a forger of bank notes.  


'''Tags:''' [[:Category: Multi Party Protocols|Multi Party Protocols]], non-local games, [[:Category: Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category: Specific Task|Specific Task]]  
'''Tags:''' [[:Category: Multi Party Protocols|Multi Party Protocols]], non-local games, [[:Category: Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category: Specific Task|Specific Task]]  
Write, autoreview, editor, reviewer
3,125

edits

Navigation menu