GHZ-based Quantum Anonymous Transmission: Difference between revisions

No edit summary
Line 13: Line 13:
* ''State distribution:'' A trusted source distributes the <math>N</math>-partite GHZ state.  
* ''State distribution:'' A trusted source distributes the <math>N</math>-partite GHZ state.  
* ''Anonymous entanglement:'' <math>N-2</math> nodes (all except for <math>S</math> and <math>R</math>) measure in the <math>X</math> basis and broadcast their measurement outcome. <math>S</math> and <math>R</math> broadcast random dummy bits. The parity of measurement outcomes allows to establish an entangled link between <math>S</math> and <math>R</math> which is called [[anonymous entanglement]] (AE).
* ''Anonymous entanglement:'' <math>N-2</math> nodes (all except for <math>S</math> and <math>R</math>) measure in the <math>X</math> basis and broadcast their measurement outcome. <math>S</math> and <math>R</math> broadcast random dummy bits. The parity of measurement outcomes allows to establish an entangled link between <math>S</math> and <math>R</math> which is called [[anonymous entanglement]] (AE).
* ''Teleportation:'' Sender <math>S</math> teleports the message state <math>|\psi\rangle</math> to the receiver <math>R</math> using the established anonymous entanglement. Classical message $m$ associated with teleportation is also sent anonymously.  
* ''Teleportation:'' Sender <math>S</math> teleports the message state <math>|\psi\rangle</math> to the receiver <math>R</math> using the established anonymous entanglement. Classical message <math>m</math> associated with teleportation is also sent anonymously.


==Notations Used==
==Notations Used==
Write, autoreview, editor, reviewer
3,125

edits