Write
3
edits
Line 47: | Line 47: | ||
*'''Pauli Gates(U):''' Single Qubit Gates I (Identity), X, Y, Z. All the gates in this set follow <math>U^2=I</math> | *'''Pauli Gates(U):''' Single Qubit Gates I (Identity), X, Y, Z. All the gates in this set follow <math>U^2=I</math> | ||
*'''Clifford Gates(C):''' Pauli Gates, Phase Gate, C-NOT. This set of gates can be simulated on classical computer. All the gates in this set follow CU=U'C, where U and U' are two different Pauli gates depending on C | *'''Clifford Gates(C):''' Pauli Gates, Phase Gate, C-NOT. This set of gates can be simulated on classical computer. All the gates in this set follow CU=U'C, where U and U' are two different Pauli gates depending on C | ||
*'''Universal Set of gates:''' This set consists of all Clifford gates and one Non-Clifford gate (T gate). If a model can realise Universal Set of gates, it can imlement any quantum computation efficiently. T gates follow <math>UT=P^aU'T</math>, where P is the phase gate and U, U' are any two Pauli gates depending on | *'''Universal Set of gates:''' This set consists of all Clifford gates and one Non-Clifford gate (T gate). If a model can realise Universal Set of gates, it can imlement any quantum computation efficiently. T gates follow <math>UT=P^aU'T</math>, where P is the phase gate and U, U' are any two Pauli gates depending on T. Parameter <math>a\in \{0,1\}</math> is obtained from U, such that <math>P^0=I</math>, <math>P^1=P</math>.</br> | ||
To summarize, if <math>C^1=</math>P, <math>C^2=</math>C, <math>C^3=</math>T, then <math>C^{k}=\{U:UQU=C^{k-1}|Q\ | To summarize, if <math>C^1=</math>P, <math>C^2=</math>C, <math>C^3=</math>T, then <math>C^{k}=\{U:UQU=C^{k-1}|Q\in C^1\}</math> | ||
===Magic States=== | ===Magic States=== |