Glossary: Difference between revisions

Jump to navigation Jump to search
320 bytes added ,  11 July 2019
Line 7: Line 7:
===Unitary Operations===
===Unitary Operations===
*<math>\text{X (NOT gate)}</math>:  <math>X|0\rangle\,\to\,\ |1\rangle,\quad X|1\rangle\,\to\,\ |0\rangle,\quad X|+\rangle\,\to\,\ |+\rangle,\quad *X|-\rangle\,\to\,\ -|-\rangle</math>
*<math>\text{X (NOT gate)}</math>:  <math>X|0\rangle\,\to\,\ |1\rangle,\quad X|1\rangle\,\to\,\ |0\rangle,\quad X|+\rangle\,\to\,\ |+\rangle,\quad *X|-\rangle\,\to\,\ -|-\rangle</math>
*<math>\text{Z (Phase gate)}</math>: <math>Z|+\rangle \,\to\,\ |-\rangle,\quad Z|-\rangle \,\to\,\ |+\rangle,\quad Z|0\rangle \,\to\,\ |0\rangle,\quad Z|1\rangle \,\to\,\ -|1\rangle </math></br>
*<math>\text{Z}</math>: <math>Z|+\rangle \,\to\,\ |-\rangle,\quad Z|-\rangle \,\to\,\ |+\rangle,\quad Z|0\rangle \,\to\,\ |0\rangle,\quad Z|1\rangle \,\to\,\ -|1\rangle </math></br>
Thus, <math>|0\rangle </math>, <math>|1\rangle </math> are eigenstates of Z gate and <math>|+\rangle</math>, <math>|-\rangle </math> are eigenstates of X gate.
Thus, <math>|0\rangle </math>, <math>|1\rangle </math> are eigenstates of Z gate and <math>|+\rangle</math>, <math>|-\rangle </math> are eigenstates of X gate.
*<math>\text{H (Hadamard gate)}</math>: <math>H|0\rangle \,\to\,\ |+\rangle </math> or  <math>H|1\rangle \,\to\,\ |-\rangle </math>
*<math>\text{H (Hadamard gate)}</math>: <math>H|0\rangle \,\to\,\ |+\rangle </math> or  <math>H|1\rangle \,\to\,\ |-\rangle </math>
*<math>\text{P (Phase Gate)}</math>: Gates in this class operate on a single qubit. They are represented by 2 x 2 matrices of the form <math>R(\theta)</math>, as shown below. Here <math>\theta</math> is the phase shift.


<math>X=
<math><math>R(\theta)</math>=
  \left[ {\begin{array}{cc}
  1 & 0 \\
  0 & e^{i\theta} \\
  \end{array} }\right],\quad
X=
   \left[ {\begin{array}{cc}
   \left[ {\begin{array}{cc}
   0 & 1 \\
   0 & 1 \\
Line 29: Line 35:
*<math>\text{Controlled-U(CU)}</math>:  uses two inputs, control qubit and target qubit. It operates U on the second(target) qubit only when the first (source) qubit is 1. C-U gates are used to produce entangled states, when the target qubit is <math>|+\rangle</math> and control qubit is not an eigenstate of U. In the given equation 'i' denotes the source qubit and 'j', the target qubit. Following are two important C-U gates.
*<math>\text{Controlled-U(CU)}</math>:  uses two inputs, control qubit and target qubit. It operates U on the second(target) qubit only when the first (source) qubit is 1. C-U gates are used to produce entangled states, when the target qubit is <math>|+\rangle</math> and control qubit is not an eigenstate of U. In the given equation 'i' denotes the source qubit and 'j', the target qubit. Following are two important C-U gates.
<math>
<math>
\text{Controlled-NOT(CX or CNOT): }CX_{ij}|+\rangle_i|0\rangle_j\,\to\,\ \frac{1}{\sqrt{2}} (|0_i0_j\rangle+|1_i1_j\rangle)</math></br>
\text{Controlled-NOT(C-X or CNOT): }CX_{ij}|+\rangle_i|0\rangle_j\,\to\,\ \frac{1}{\sqrt{2}} (|0_i0_j\rangle+|1_i1_j\rangle)</math></br>
<math>\text{Controlled-Phase(CZ): }CZ_{ij}|+\rangle_i|+\rangle_j\,\to\,\ \frac{1}{\sqrt{2}} (|0_i+_j\rangle+|1_i-_j\rangle)</math>
<math>\text{Controlled-Z (C-Z):}CZ_{ij}|+\rangle_i|+\rangle_j\,\to\,\ \frac{1}{\sqrt{2}} (|0_i+_j\rangle+|1_i-_j\rangle)</math>


The commutation relations for the above gates are as follows:</br>
The commutation relations for the above gates are as follows:</br>
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu