Write, autoreview, editor, reviewer
3,129
edits
No edit summary |
|||
Line 198: | Line 198: | ||
Hence, we obtain a measurement pattern to implement C-NOT gate with a T-shaped graph state with three qubits entangled chain <math>\{2,3,4\}</math> and 1 entangled to 3. X dependency sets for qubit <math>1:\{s_3\}</math>, <math>2:\phi</math>, <math>3:\phi</math>, <math>4:\phi</math>. Z dependency sets for qubit <math>1:\{s_2\}</math>, <math>2:\phi</math>, <math>3:\phi</math>, <math>4:\{s_2\}</math>. The measurements are independent of any outcome so they can all be performed in parallel. In the end, Pauli corrections are performed as such. Parity (modulo 2 sum) of all the previous outcomes in the dependency set is calculated for each qubit (i), for X (<math>s^X_i=s_1\oplus s_2\oplus...</math>) and Z (<math>s^Z_i=s_1\oplus s_2\oplus...</math>), separately. Thus, <math>X^{s^X_i}Z^{s^Z_i}</math> is operated on qubit i. <br/> | Hence, we obtain a measurement pattern to implement C-NOT gate with a T-shaped graph state with three qubits entangled chain <math>\{2,3,4\}</math> and 1 entangled to 3. X dependency sets for qubit <math>1:\{s_3\}</math>, <math>2:\phi</math>, <math>3:\phi</math>, <math>4:\phi</math>. Z dependency sets for qubit <math>1:\{s_2\}</math>, <math>2:\phi</math>, <math>3:\phi</math>, <math>4:\{s_2\}</math>. The measurements are independent of any outcome so they can all be performed in parallel. In the end, Pauli corrections are performed as such. Parity (modulo 2 sum) of all the previous outcomes in the dependency set is calculated for each qubit (i), for X (<math>s^X_i=s_1\oplus s_2\oplus...</math>) and Z (<math>s^Z_i=s_1\oplus s_2\oplus...</math>), separately. Thus, <math>X^{s^X_i}Z^{s^Z_i}</math> is operated on qubit i. <br/> | ||
===SWAP test=== | ===Quantum SWAP test=== | ||
<div id="swap"> | <div id="swap"> | ||
[[File:SWAP_test_figure.png |center|thumb|500px|Figure 8: Gate Teleporation for Multiple Single Qubit Gates]]</div> | [[File:SWAP_test_figure.png |center|thumb|500px|Figure 8: Gate Teleporation for Multiple Single Qubit Gates]]</div> | ||
SWAP helps to compare two states <math>|\psi\rangle</math> and <math>|\psi'\rangle</math>. An ancilla qubit is prepared here in the state <math>\frac{|0\rangle + |1\rangle}{2}</math> and a controlled swap test is performed on two states <math>|\psi\rangle</math> and <math>|\psi'\rangle</math>. | Quantum SWAP test helps to compare two quantum states <math>|\psi\rangle</math> and <math>|\psi'\rangle</math>. An ancilla qubit is prepared here in the state <math>\frac{|0\rangle + |1\rangle}{2}</math> and a controlled swap test is performed on two states <math>|\psi\rangle</math> and <math>|\psi'\rangle</math>. | ||
If <math>|\psi\rangle</math> = <math>|\psi'\rangle</math>, then the ancilla qubit, after performing a Hadamard operation, yields <math>|0\rangle</math> when measurement is applied in computational basis. SWAP test is passed here. | If <math>|\psi\rangle</math> = <math>|\psi'\rangle</math>, then the ancilla qubit, after performing a Hadamard operation, yields <math>|0\rangle</math> when measurement is applied in computational basis. SWAP test is passed here. |