Write, autoreview, editor, reviewer
3,129
edits
No edit summary |
|||
Line 122: | Line 122: | ||
</ul></div></div></div><br/> | </ul></div></div></div><br/> | ||
This shows that for a pair of <math>\mathrm{CZ}</math> entangled qubits, if the second qubit is in <math>|+\rangle</math> state (not an eigen value of <math>\mathrm{Z}</math>) then one can teleport (transfer) the first qubit state operated by any unitary gate <math>\mathrm{U}</math> to the second qubit by performing operations only on the first qubit and measuring it. Next, we would need to make certain Pauli corrections (in this case <math>{\mathrm{X}}^{\mathrm{m}}</math>) to obtain <math>\mathrm{U}|\psi\rangle</math>. In other words, we can say the operated state is teleported to the second qubit by a rotated basis measurement of the first qubit with additional Pauli corrections. | This shows that for a pair of <math>\mathrm{CZ}</math> entangled qubits, if the second qubit is in <math>|+\rangle</math> state (not an eigen value of <math>\mathrm{Z}</math>) then one can teleport (transfer) the first qubit state operated by any unitary gate <math>\mathrm{U}</math> to the second qubit by performing operations only on the first qubit and measuring it. Next, we would need to make certain Pauli corrections (in this case <math>{\mathrm{X}}^{\mathrm{m}}</math>) to obtain <math>\mathrm{U}|\psi\rangle</math>. In other words, we can say the operated state is teleported to the second qubit by a rotated basis measurement of the first qubit with additional Pauli corrections. | ||
===SWAP test=== | |||
<div id="4"> | |||
[[File:Gate Teleportation for Multiple Qubit Gates.jpg|center|thumb|500px|Figure 4: Gate Teleporation for Multiple Single Qubit Gates]]</div> | |||
===Graph states=== | ===Graph states=== |