Write, autoreview, editor, reviewer
3,129
edits
Line 117: | Line 117: | ||
====Flow Construction-Determinism==== | ====Flow Construction-Determinism==== | ||
Measurement outcomes of qubits is not certain, hence it renders MBQC a non-deterministic model. This can still be rectified by invoking Pauli corrections based on the previous outcomes, as evident from above. For example, to implement Hadamard gate on input state <math>|\psi_i\rangle = a|0_i\rangle + b|1_i\rangle</math>, we consider the case of a two qubit graph state <math>C_{ | Measurement outcomes of qubits is not certain, hence it renders MBQC a non-deterministic model. This can still be rectified by invoking Pauli corrections based on the previous outcomes, as evident from above. For example, to implement Hadamard gate on input state <math>|\psi_i\rangle = a|0_i\rangle + b|1_i\rangle</math>, we consider the case of a two qubit graph state <math>C_{2*1}</math>.<br/> | ||
<math>C_{2x1} = CZ_{ij} |\psi_{ii} |+_{ij}\rangle = a|00_i\rangle + a|01_i\rangle + b|10_i\rangle − b|11_i\rangle</math><br/> | <math>C_{2x1} = CZ_{ij} |\psi_{ii}\rangle |+_{ij}\rangle = a|00_i\rangle + a|01_i\rangle + b|10_i\rangle − b|11_i\rangle</math><br/> | ||
If one measures qubit i in <math>\{|+_i\rangle,|−_i\rangle\}</math> basis and gets outcome s, qubit j reduces to,<br/> | If one measures qubit i in <math>\{|+_i\rangle,|−_i\rangle\}</math> basis and gets outcome s, qubit j reduces to,<br/> | ||
<math>= (a + b)|0_i\rang;e + (a − b)|1_i\rangle, if s=0</math><br/> | <math>= (a + b)|0_i\rang;e + (a − b)|1_i\rangle, if s=0</math><br/> |