Glossary: Difference between revisions

Jump to navigation Jump to search
7 bytes added ,  9 May 2019
Line 117: Line 117:
====Flow Construction-Determinism====
====Flow Construction-Determinism====


Measurement outcomes of qubits is not certain, hence it renders MBQC a non-deterministic model. This can still be rectified by invoking Pauli corrections based on the previous outcomes, as evident from above. For example, to implement Hadamard gate on input state <math>|\psi_i\rangle = a|0_i\rangle + b|1_i\rangle</math>, we consider the case of a two qubit graph state <math>C_{2x1}</math>.<br/>
Measurement outcomes of qubits is not certain, hence it renders MBQC a non-deterministic model. This can still be rectified by invoking Pauli corrections based on the previous outcomes, as evident from above. For example, to implement Hadamard gate on input state <math>|\psi_i\rangle = a|0_i\rangle + b|1_i\rangle</math>, we consider the case of a two qubit graph state <math>C_{2*1}</math>.<br/>
<math>C_{2x1} = CZ_{ij} |\psi_{ii} |+_{ij}\rangle = a|00_i\rangle + a|01_i\rangle + b|10_i\rangle − b|11_i\rangle</math><br/>
<math>C_{2x1} = CZ_{ij} |\psi_{ii}\rangle |+_{ij}\rangle = a|00_i\rangle + a|01_i\rangle + b|10_i\rangle − b|11_i\rangle</math><br/>
If one measures qubit i in <math>\{|+_i\rangle,|−_i\rangle\}</math> basis and gets outcome s, qubit j reduces to,<br/>
If one measures qubit i in <math>\{|+_i\rangle,|−_i\rangle\}</math> basis and gets outcome s, qubit j reduces to,<br/>
<math>= (a + b)|0_i\rang;e + (a − b)|1_i\rangle, if s=0</math><br/>
<math>= (a + b)|0_i\rang;e + (a − b)|1_i\rangle, if s=0</math><br/>
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu