Editing Glossary

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 47: Line 47:
*'''Pauli Gates(U):''' Single Qubit Gates I (Identity), X, Y, Z. All the gates in this set follow <math>U^2=I</math>
*'''Pauli Gates(U):''' Single Qubit Gates I (Identity), X, Y, Z. All the gates in this set follow <math>U^2=I</math>
*'''Clifford Gates(C):''' Pauli Gates, Phase Gate, C-NOT. This set of gates can be simulated on classical computer. All the gates in this set follow CU=U'C, where U and U' are two different Pauli gates depending on C
*'''Clifford Gates(C):''' Pauli Gates, Phase Gate, C-NOT. This set of gates can be simulated on classical computer. All the gates in this set follow CU=U'C, where U and U' are two different Pauli gates depending on C
*'''Universal Set of gates:''' This set consists of all Clifford gates and one Non-Clifford gate (T gate). If a model can realise Universal Set of gates, it can imlement any quantum computation efficiently. T gates follow <math>UT=P^aU'T</math>, where P is the phase gate and U, U' are any two Pauli gates depending on T. Parameter <math>a\in \{0,1\}</math> is obtained from U, such that <math>P^0=I</math>, <math>P^1=P</math>.</br>
*'''Universal Set of gates:''' This set consists of all Clifford gates and one Non-Clifford gate (T gate). If a model can realise Universal Set of gates, it can imlement any quantum computation efficiently. T gates follow <math>UT=P^aU'T</math>, where P is the phase gate and U, U' are any two Pauli gates depending on C. Parameter <math>a\epsilon{0,1}</math> is obtained from U, such that <math>P^0=I</math>, <math>P^1=P</math>.</br>
To summarize, if <math>C^1=</math>P, <math>C^2=</math>C, <math>C^3=</math>T, then <math>C^{k}=\{U:UQU=C^{k-1}|Q\in C^1\}</math>
To summarize, if <math>C^1=</math>P, <math>C^2=</math>C, <math>C^3=</math>T, then <math>C^{k}=\{U:UQU=C^{k-1}|Q\epsilon C^1\}</math>


===Magic States===
===Magic States===
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)