Editing Verification of Universal Quantum Computation

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
==Functionality==
==Functionality==
Quantum Computers perform task which are intractable for classical computers. The basic question here would be, "How should one verify the result of a quantum computer? This task is known as quantum verification or verification of quantum computation. [https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bqp BQP] is the class of problems that can be solved by a quantum computer and [https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bpp BPP] is the class of problems that can be solved by a classical computer. BPP is contained in BQP and hence, there are problems a quantum computer would solve that are intractable for a classical computer, to put it simply. Thus, if in future, an untrusted company claims to have built a quantum computer, how can the consumer be sure of the [https://people.eecs.berkeley.edu/~sanjamg/classes/cs276-fall14/scribe/lec09.pdf correctness] of the results when he/she (the consumer) cannot compare the results predicted by the proposed quantum computer? This problem is addressed by the functionality, 'verification of quantum computers'.  Verification of universal quantum computation targets every computation that can be performed by a quantum computer.<br/><br/>
Quantum Computers perform task which are intractable for classical computers. The basic question here would be, "How should one verify the result of a quantum computer? This task is known as quantum verification or verification of quantum computation. [https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bqp BQP] is the class of problems that can be solved by a quantum computer and [https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bpp BPP] is the class of problems that can be solved by a classical computer. BPP is contained in BQP and hence, there are problems a quantum computer would solve that are intractable for a classical computer, to put it simply. Thus, if in future, an untrusted company claims to have built a quantum computer, how can the consumer be sure of the [https://people.eecs.berkeley.edu/~sanjamg/classes/cs276-fall14/scribe/lec09.pdf correctness] of the results when he/she (the consumer) cannot compare the results predicted by the proposed quantum computer? This problem is addressed by the functionality, 'verification of quantum computers'.  Verification of universal quantum computation targets every computation that can be performed by a quantum computer.<br/><br/>
'''Tags:'''  [[:Category: Quantum Functionality|Quantum Functionality]], [[Category: Quantum Functionality]] [[:Category:Universal Task|Universal Task]][[Category:Universal Task]], [[Classical Verification of Universal Quantum Computation]], [[Verification of Sub-Universal Quantum Computation]], [[Verification of NP-complete problems]]
'''Tags:'''  [[:Category: Quantum Functionality|Quantum Functionality]], [[Category: Quantum Functionality]] [[:Category:Universal Task|Universal Task]][[Category:Universal Task]]


==Protocols==
==Protocols==
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)