Editing Verification of NP-complete problems

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 17: Line 17:
*'''Uniformity Test''' Merlin can cheat by sending a state which is not proper, in which case the satisfiability test might accept even if there is no correct assignment to the problem. In order to avoid this, Arthur can perform a test on all the proofs to check if the incoming states are in the expected form.
*'''Uniformity Test''' Merlin can cheat by sending a state which is not proper, in which case the satisfiability test might accept even if there is no correct assignment to the problem. In order to avoid this, Arthur can perform a test on all the proofs to check if the incoming states are in the expected form.
*'''Symmetry Test:''' The quantum proofs might not be identical, which might mislead Arthur into believe a dishonest Merlin. To prevent this, Arthur chooses two copies at random and perform a SWAP test to see if they are the same quantum state.
*'''Symmetry Test:''' The quantum proofs might not be identical, which might mislead Arthur into believe a dishonest Merlin. To prevent this, Arthur chooses two copies at random and perform a SWAP test to see if they are the same quantum state.
==Notation==
==Notations Used==
**<math>N:</math> size of the problem
**<math>N:</math> size of the problem
**<math>x=\{x_1 x_2 ... x_N\}:</math> Merlin's assignment to solve the problem
**<math>x=\{x_1 x_2 ... x_N\}:</math> Merlin's assignment to solve the problem
Line 24: Line 24:
**<math>|\psi_x\rangle_k=\frac{1}{\sqrt{N}}\sum_{i=1}^N(-1)^{x_i}|i\rangle:</math> <math>k^th</math> quantum proof encoding the assignment x
**<math>|\psi_x\rangle_k=\frac{1}{\sqrt{N}}\sum_{i=1}^N(-1)^{x_i}|i\rangle:</math> <math>k^th</math> quantum proof encoding the assignment x
**<math>\mathcal{M}</math>: set of all the possible matchings between two indices in [N].
**<math>\mathcal{M}</math>: set of all the possible matchings between two indices in [N].
==Hardware Requirements==
==Hardware Requirements==
* '''Network Stage:''' [[:Category: Prepare and Measure Network Stage|Prepare and Measure]][[Category: Prepare and Measure Network Stage]]
* '''Network Stage:''' [[:Category: Prepare and Measure Network Stage|Prepare and Measure]][[Category: Prepare and Measure Network Stage]]
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)