Prepare and Measure Quantum Digital Signature: Difference between revisions

Jump to navigation Jump to search
Line 36: Line 36:
# assumes maximum number of participating parties are honest. In the present case at least two parties are honest.
# assumes maximum number of participating parties are honest. In the present case at least two parties are honest.
# provides security against repudiation, i.e. the probability that seller succeeds in making buyer and seller disagree on the validity of her sent quantum signature decays exponentially with L, as stated by the formula <math>P(\text{rep})\le e^{-(s_v-s_a)^2L}</math>.
# provides security against repudiation, i.e. the probability that seller succeeds in making buyer and seller disagree on the validity of her sent quantum signature decays exponentially with L, as stated by the formula <math>P(\text{rep})\le e^{-(s_v-s_a)^2L}</math>.
# provides security against forgery, i.e. any recipient (verifier) with high probability rejects any message which was not originally sent by the seller herself. Forging probability is given by the formula, <math>P(\text{forge})\le e^{-(c_{\min}-2s_v)^2L}</math>, where <math>c_{\min}</math> is 3/8 (can be calculated using uncertainty principle).
# provides security against forgery, i.e. any recipient (verifier) with high probability rejects any message which was not originally sent by the seller herself. Forging probability is given by the formula, <math>P(\text{forge})\le e^{-(c_{\min}-2s_v)^2L}</math>, where <math>c_{\min}</math> is 3/8 (calculated using uncertainty principle).


===Pseudo Code===
===Pseudo Code===
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu