Write, autoreview, editor, reviewer
3,129
edits
Line 93: | Line 93: | ||
## Choose p[j] | ## Choose p[j] | ||
## Perform Bell Measurement on jth pair with an extra (P†)p operation, get outcomes (x[j],z[j]) | ## Perform Bell Measurement on jth pair with an extra (P†)p operation, get outcomes (x[j],z[j]) | ||
## Thus, new EPR pairs are{missing math}<br/>If (sk = 0) then {(b1,b2),(b2,b3),...,(b4m−1,b4m)}<br/> | ## Thus, new EPR pairs are{missing math}<br/>If (sk = 0) then {(b1,b2),(b2,b3),...,(b4m−1,b4m)}<br/>If (sk = 1) then {(b1,b3),(b2,b4),...,(b4m−2,b4m)}<br/>Denote the 2m entangled pairs be denoted by {(s1,t1),(s2,t2),...,(s2m,t2m)}, such that<br/> | ||
###The classical information of gadget be g(sk)= ({(s1,t1),(s2,t2),...,(s2m,t2m),p,sk}.<br/> | |||
###The quantum state of gadget can be written as {missing math} | |||
# Encrypt (x[j],z[j]), p[j] for all j and sk using pki+1. Resulting Gadget is the classical-quantum (CQ) state,{missing math} | # Encrypt (x[j],z[j]), p[j] for all j and sk using pki+1. Resulting Gadget is the classical-quantum (CQ) state,{missing math} | ||