Write, autoreview, editor, reviewer
3,129
edits
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
* XZ = −ZX | * XZ = −ZX | ||
*(X ⊗ I)CZ = CZ(X ⊗ Z), (Z ⊗ I)CZ = CZ(Z ⊗ I) 1 <br/> | *(X ⊗ I)CZ = CZ(X ⊗ Z), (Z ⊗ I)CZ = CZ(Z ⊗ I) 1 <br/> | ||
== Hierarchy of Quantum Gates == | |||
== Homomorphic Encryption == | |||
== Quantum One Time Pad == | |||
== Measurement Based Quantum Computation (MBQC)== | == Measurement Based Quantum Computation (MBQC)== | ||
MBQC is a formalism used for quantum computation by operating only single qubit measurements on a fixed set of entangled states, also known as graph states. Graph states denote any graph where each node represents a quantum state, and the edges denote entanglement between any two vertices. The measurement on successive layers of qubits is decided by previous measurement outcomes. Outcomes of last qubit layer gives the result of concerned computation. Following, we elucidate in detail certain concepts necessary to understand the working of MBQC. | MBQC is a formalism used for quantum computation by operating only single qubit measurements on a fixed set of entangled states, also known as graph states. Graph states denote any graph where each node represents a quantum state, and the edges denote entanglement between any two vertices. The measurement on successive layers of qubits is decided by previous measurement outcomes. Outcomes of last qubit layer gives the result of concerned computation. Following, we elucidate in detail certain concepts necessary to understand the working of MBQC. | ||
Gate Teleportation The idea comes from one-qubit teleporation. This means that one can transfer an unknown qubit |ψi without actually sending it via a quantum channel. The underlying equations explain the notion. See [[Supplementary Information#1|Figure 1]] for circuit.<br/> | ===Gate Teleportation=== | ||
The idea comes from one-qubit teleporation. This means that one can transfer an unknown qubit |ψi without actually sending it via a quantum channel. The underlying equations explain the notion. See [[Supplementary Information#1|Figure 1]] for circuit.<br/> | |||
<div id="1"> | <div id="1"> | ||
[[File:One Bit Teleportation.jpg|right|thumb|1000px|Figure 1: One Bit Teleportation]] | [[File:One Bit Teleportation.jpg|right|thumb|1000px|Figure 1: One Bit Teleportation]] | ||
Line 36: | Line 44: | ||
</ul></div></div></div><br/> | </ul></div></div></div><br/> | ||
This shows that for a pair of C-Z entangled qubits, if the second qubit is in |+i state (not an eigen value of Z) then one can teleport (transfer) the first qubit state operated by any unitary gate U to the second qubit by performing operations only on the first qubit and measuring it. Next, we would need to make certain Pauli corrections (in this case Xm) to obtain U |ψi. In other words, we can say the operated state is teleported to the second qubit by a rotated basis measurement of the first qubit with additional Pauli corrections. | This shows that for a pair of C-Z entangled qubits, if the second qubit is in |+i state (not an eigen value of Z) then one can teleport (transfer) the first qubit state operated by any unitary gate U to the second qubit by performing operations only on the first qubit and measuring it. Next, we would need to make certain Pauli corrections (in this case Xm) to obtain U |ψi. In other words, we can say the operated state is teleported to the second qubit by a rotated basis measurement of the first qubit with additional Pauli corrections. | ||
Graph states The above operation can also be viewed as a graph state with two nodes and one edge. The qubit 1 is measured in a rotated basis HZ(θ), thus leaving qubit 2 in desired state and Pauli Correction Xs1HZ(θ1)|ψi, where s1 is the measurement outcome of qubit 1.[[Supplementary Information#3|Figure 3]]<br/> | ===Graph states=== | ||
The above operation can also be viewed as a graph state with two nodes and one edge. The qubit 1 is measured in a rotated basis HZ(θ), thus leaving qubit 2 in desired state and Pauli Correction Xs1HZ(θ1)|ψi, where s1 is the measurement outcome of qubit 1.[[Supplementary Information#3|Figure 3]]<br/> | |||
<div id="3"> | <div id="3"> | ||
[[File:Graph States for Single Qubit States.jpg|center|thumb|1000px|Figure 3: Graph State for Single Qubit Gates]]</div> | [[File:Graph States for Single Qubit States.jpg|center|thumb|1000px|Figure 3: Graph State for Single Qubit Gates]]</div> | ||
Line 43: | Line 52: | ||
[[File:Gate Teleportation for Multiple Qubit Gates.jpg|center|thumb|500px|Figure 4: Gate Teleporation for Multiple Single Qubit Gates]]</div> | [[File:Gate Teleportation for Multiple Qubit Gates.jpg|center|thumb|500px|Figure 4: Gate Teleporation for Multiple Single Qubit Gates]]</div> | ||
The measurement on qubit 1 will operate Xs1HZ(θ1)|ψi⊗I on qubits 2 and 3. If qubit 2 when measured in the given basis yields outcome s2, qubit 3 results in the following state Xs2HZ(θ2)Xs1HZ(θ1)|ψi. Using the relation we shift all the Pauli corrections to one end i.e. qubit 3 becomes Xs2Zs1HZ(±θ2)HZ(θ1)|ψi{equation missing}(Zs1H = HXs1). This method of computation requires sequential measurement of states i.e. all the states should not be measured simultaneously. As outcome of qubit 1 can be used to choose sign of ±θ2. This technique is also known as adaptive measurement. With each measurement, the qubits before the one measured at present have been destroyed by measurement. It is a feed-forward mechanism, hence known as one way quantum computation.<br/> | The measurement on qubit 1 will operate Xs1HZ(θ1)|ψi⊗I on qubits 2 and 3. If qubit 2 when measured in the given basis yields outcome s2, qubit 3 results in the following state Xs2HZ(θ2)Xs1HZ(θ1)|ψi. Using the relation we shift all the Pauli corrections to one end i.e. qubit 3 becomes Xs2Zs1HZ(±θ2)HZ(θ1)|ψi{equation missing}(Zs1H = HXs1). This method of computation requires sequential measurement of states i.e. all the states should not be measured simultaneously. As outcome of qubit 1 can be used to choose sign of ±θ2. This technique is also known as adaptive measurement. With each measurement, the qubits before the one measured at present have been destroyed by measurement. It is a feed-forward mechanism, hence known as one way quantum computation.<br/> | ||
Cluster States In case of multi-qubit quatum circuits, one needs a 2-dimensional graph state. Cluster State is a square lattice used as substrate for such computation. All the nodes are in |+i entangled by C-Z indicated by the edges. It is known to be universal i.e. it can simulate any quatum gate.<br/> | ===Cluster States=== | ||
In case of multi-qubit quatum circuits, one needs a 2-dimensional graph state. Cluster State is a square lattice used as substrate for such computation. All the nodes are in |+i entangled by C-Z indicated by the edges. It is known to be universal i.e. it can simulate any quatum gate.<br/> | |||
<div id="5"> | <div id="5"> | ||
[[File:Cluster State.jpg|center|thumb|500px|Figure 5: Cluster State]]</div>Each row would thus represent the teleporation of starting qubit in that row horizontally. On the other hand, vertical edges indicate different input qubits linked with multi-qubit gates (same as circuit model). For example, see Figure [[Supplementary Information#6|Figure 6]] to understand the conversion from circuit model to graph state model. As the computation relation follows X = HZH, thus, Figure [[Supplementary Information#6a|Figure 6a]] represents Circuit diagram for C-NOT gate in terms of C-Z gate and Single Qubit Gate H.<br/> | [[File:Cluster State.jpg|center|thumb|500px|Figure 5: Cluster State]]</div>Each row would thus represent the teleporation of starting qubit in that row horizontally. On the other hand, vertical edges indicate different input qubits linked with multi-qubit gates (same as circuit model). For example, see Figure [[Supplementary Information#6|Figure 6]] to understand the conversion from circuit model to graph state model. As the computation relation follows X = HZH, thus, Figure [[Supplementary Information#6a|Figure 6a]] represents Circuit diagram for C-NOT gate in terms of C-Z gate and Single Qubit Gate H.<br/> | ||
Line 55: | Line 65: | ||
Thus, if measurement on 1 yields m, qubit 2 would be in the state Zm |+i. Hence, such Z-basis measurements invoke an extra Zm Pauli correction on all the neigbouring sites of 1 with 1 eliminated, in the resulting graph state. Thus, to summarise, we design a measurement pattern from gate teleportation circuit of the desired computation as shown above. The cluster state is converted into the required graph state by Z-basis measurement on extraneous sites. Measuring all the qubits in the required basis and we get the required computation in the form of classical outcome register from measurement of the last layer of qubits. If it is a quantum function, the last layer of qubits is the output quantum register.<br/> | Thus, if measurement on 1 yields m, qubit 2 would be in the state Zm |+i. Hence, such Z-basis measurements invoke an extra Zm Pauli correction on all the neigbouring sites of 1 with 1 eliminated, in the resulting graph state. Thus, to summarise, we design a measurement pattern from gate teleportation circuit of the desired computation as shown above. The cluster state is converted into the required graph state by Z-basis measurement on extraneous sites. Measuring all the qubits in the required basis and we get the required computation in the form of classical outcome register from measurement of the last layer of qubits. If it is a quantum function, the last layer of qubits is the output quantum register.<br/> | ||
== Brickwork States== | === Brickwork States=== | ||
Although cluster states are universal for MBQC, yet we need to tailor these to the specific computation by performing some computational (Z) basis measurements. If we were to use this principle for blind quantum computing, Client would have to reveal information about the structure of the underlying graph state. Thus, for the UBQC protocol, we introduce a new family of states called the Brickwork states which are universal for X − Y plane measurements and thus do not require the initial computational basis measurements. It was later shown that the Z-basis measurements can be dropped for cluster states and hence cluster states are also universal in X-Y measurements. | Although cluster states are universal for MBQC, yet we need to tailor these to the specific computation by performing some computational (Z) basis measurements. If we were to use this principle for blind quantum computing, Client would have to reveal information about the structure of the underlying graph state. Thus, for the UBQC protocol, we introduce a new family of states called the Brickwork states which are universal for X − Y plane measurements and thus do not require the initial computational basis measurements. It was later shown that the Z-basis measurements can be dropped for cluster states and hence cluster states are also universal in X-Y measurements. | ||
<div id="7"> | <div id="7"> | ||
Line 65: | Line 75: | ||
# For each column j ≡ 7 (mod 8) and each even row i, apply the operator c-Z on qubits (i,j) and (i + 1,j) and also on qubits (i,j + 2) and (i + 1,j + 2). | # For each column j ≡ 7 (mod 8) and each even row i, apply the operator c-Z on qubits (i,j) and (i + 1,j) and also on qubits (i,j + 2) and (i + 1,j + 2). | ||
== | ===Flow Construction-Determinism=== | ||
Measurement outcomes of qubits is not certain, hence it renders MBQC a non-deterministic model. This can still be rectified by invoking Pauli corrections based on the previous outcomes, as evident from above. For example, to implement Hadamard gate on input state |ψi = a|0i + b|1i, we consider the case of a two qubit graph state C2x1.<br/> | Measurement outcomes of qubits is not certain, hence it renders MBQC a non-deterministic model. This can still be rectified by invoking Pauli corrections based on the previous outcomes, as evident from above. For example, to implement Hadamard gate on input state |ψi = a|0i + b|1i, we consider the case of a two qubit graph state C2x1.<br/> |