Write, autoreview, editor, reviewer
3,129
edits
Line 1: | Line 1: | ||
==Functionality Description== | ==Functionality Description== | ||
Secret Random Qubit Generator (SQRG) enables fully-classical parties to generate secret single qubit states using only public classical channels and a single quantum Server. This functionality could be used to replace a quantum channel completely such that a classical Client can perform various quantum applications over classical network connected to a quantum Server. An application of this functionality could be to carry out [[Secure Delegated Quantum Computation#Classical Online Communication-No Quantum Communication|Secure Delegated Quantum Computation]] by just classical online communication and no quantum communication. It allows a fully classical Client to hide her data such that she instructs Server to generate random single qubit states hiding her inputs, outputs, circuit and perform quantum computation on it via [[Prepare and Send-Universal Blind Quantum Computation|UBQC]] or [[Verifiable Universal Blind Quantum Computation|VUBQC]]. It can also find use cases in other protocols like Quantum Money, Quantum Digital Signatures etc.. which need user to share his/her private quantum key over a quantum channel. | Secret Random Qubit Generator (SQRG) enables fully-classical parties to generate secret single qubit states using only public classical channels and a single quantum Server. This functionality could be used to replace a quantum channel completely such that a classical Client can perform various quantum applications over classical network connected to a quantum Server. An application of this functionality could be to carry out [[Secure Delegated Quantum Computation#Classical Online Communication-No Quantum Communication|Secure Delegated Quantum Computation]] by just classical online communication and no quantum communication. It allows a fully classical Client to hide her data such that she instructs Server to generate random single qubit states hiding her inputs, outputs, circuit and perform quantum computation on it via [[Prepare and Send-Universal Blind Quantum Computation|UBQC]] or [[Verifiable Universal Blind Quantum Computation|VUBQC]]. It can also find use cases in other protocols like Quantum Money, Quantum Digital Signatures etc.. which need user to share his/her private quantum key over a quantum channel. | ||
'''Tags:''' [[Two Party Protocols|Two Party | |||
==Use Case== | |||
*Replacing quantum channels by classical channels for quantum cloud computing | |||
*Generating random qubits for protocols like quantum-key-distribution, quantum money, quantum coin-flipping, quantum signatures, two-party quantum computation, multiparty quantum computation etc. | |||
'''Tags:''' [[Two Party Protocols|Two Party]], [[Universal Task|Universal Task]], [[Secure Delegated Quantum Computation#Classical Online Communication-No Quantum Communication|Secure Delegated Quantum Computation]], Classical Online Communication, [[Supplementary Information#Superposition|Superposition]], [[Supplementary Information#Collision Resistant Functions|Collision Resistant Functions]], [[Supplementary Information#Learning With Errors|Learning With Errors]] | |||
== Outline == | == Outline == |