Write, autoreview, editor, reviewer
3,129
edits
Line 35: | Line 35: | ||
*Input: L | *Input: L | ||
*Output: Seller: Private keys <math>\{\beta^0_1,...,\beta^0_L\},\{\beta^1_1,...,\beta^1_L\}</math>; Buyer: Eliminated Signatures <math>B^0,B^1</math>; Verifier:Eliminated Signatures <math>C^0,C^1</math> | *Output: Seller: Private keys <math>\{\beta^0_1,...,\beta^0_L\},\{\beta^1_1,...,\beta^1_L\}</math>; Buyer: Eliminated Signatures <math>B^0,B^1</math>; Verifier:Eliminated Signatures <math>C^0,C^1</math> | ||
**'''Key Distribution:'''<math>\beta^k_l</math> is the classical description of lth qubit in the quantum public key <math>|\psi^k\rangle</math> for message k | |||
#For k = 0,1 | #For k = 0,1 | ||
## Seller prepares quantum public key , where | ## Seller prepares quantum public key , where | ||
## She sends Buyer (k,|ψki) | ## She sends Buyer (k,|ψki) | ||
## She sends Verifier (k,|ψki) | ## She sends Verifier (k,|ψki) | ||
**'''State Elimination:''' <math>b^k_l</math> denotes Buyer’s random bit to determine the measurement basis of <math>l^{th}</math> qubit in the quantum public key <math>|\psi^k\rangle</math> for message k#For k = 0,1 | |||
#For k = 0,1 | |||
##For l = 1,2,...,L | ##For l = 1,2,...,L | ||
### Buyer chooses | ### Buyer chooses <math>b^k_l∈_R {0,1}</math> | ||
###If bkl =0, Buyer measures his qubit in X basis {|+i,|−i} | ###If bkl =0, Buyer measures his qubit in X basis {|+i,|−i} | ||
###bkl = 1, Buyer measures his qubit in Z basis {|0i,|1i} return | ###bkl = 1, Buyer measures his qubit in Z basis {|0i,|1i} return <math>m_{b^{k_l}}</math> | ||
''Verifier repeats steps 2(a)-2(b) with randomly chosen basis | ''Verifier repeats steps 2(a)-2(b) with randomly chosen basis <math>c^k_l</math> to get his eliminated signature elements <math>C^k_l</math>'' | ||
**'''Symmetrisation''' | |||
##For k=0,1 | ##For k=0,1 | ||
### Buyer chooses I ⊂R {1,2,...,L},|I| = dL/2e | ### Buyer chooses I ⊂R {1,2,...,L},|I| = dL/2e |