Write, autoreview, editor, reviewer
3,129
edits
Line 3: | Line 3: | ||
Delegated Computation is the task of assigning quantum computation to a powerful untrusted device (known as Server) by a weak (in terms of quantum powers) Client while maintaining privacy of the computation. Protocols under this functionality are commonly called Client-Server protocols. Delegated Quantum Computation (DQC) protocols involve partially/fully classical Client delegate a quantum computation task to a fully powerful quantum Server. All DQC protocols involve three main stages, Preparation Stage, Computation Stage, Output Correction Stage. The roles of Client and Server in the different stages may differ according to the type of communication used. It can be performed via classical and quantum communication. If the communication is carried out during the computation stage, it is online communication else if it is carried out only at during Preparation and Correction stage, it is called offline communication. It can be verifiable or non-verifiable. Hence, it is classified as follows. | Delegated Computation is the task of assigning quantum computation to a powerful untrusted device (known as Server) by a weak (in terms of quantum powers) Client while maintaining privacy of the computation. Protocols under this functionality are commonly called Client-Server protocols. Delegated Quantum Computation (DQC) protocols involve partially/fully classical Client delegate a quantum computation task to a fully powerful quantum Server. All DQC protocols involve three main stages, Preparation Stage, Computation Stage, Output Correction Stage. The roles of Client and Server in the different stages may differ according to the type of communication used. It can be performed via classical and quantum communication. If the communication is carried out during the computation stage, it is online communication else if it is carried out only at during Preparation and Correction stage, it is called offline communication. It can be verifiable or non-verifiable. Hence, it is classified as follows. | ||
===Classical Online Communication-Quantum Offline Communication=== | ===Classical Online Communication-Quantum Offline Communication=== | ||
It involves a partially quantum Client perform a one time quantum communication to send input to the Server, in the preparation Stage and then to receive outputs from the Server, during output correction. The Client and Server then exchange classical messages during the computation phase. Universal Blind Quantum Computation (UBQC) is a protocol falling under this category. In this protocol Client hides his input, output and computation from the Server using [[Supplementary Information#Measurement Based Quantum Computation|MBQC]] by sending hidden quantum states to the Server. UBQC protocols can be realised by a [[Prepare and Send-Universal Blind Quantum Computation|Prepare and Send UBQC]] protocol where client prepares and sends the input states to the Server. If the task performed by the Server can be verified by the Client, the protocol is Verifiable Universal Blind Quantum Computation (VUBQC). Same as UBQC, VUBQC can also be realised by [[Prepare and Send Verifiable Universal Blind Quantum Computation|Prepare and Send VUBQC]]. | It involves a partially quantum Client perform a one time quantum communication to send input to the Server, in the preparation Stage and then to receive outputs from the Server, during output correction. The Client and Server then exchange classical messages during the computation phase. Universal Blind Quantum Computation (UBQC) is a protocol falling under this category. In this protocol Client hides his input, output and computation from the Server using [[Supplementary Information#Measurement Based Quantum Computation|'''MBQC''']] by sending hidden quantum states to the Server. UBQC protocols can be realised by a [[Prepare and Send-Universal Blind Quantum Computation|'''Prepare and Send UBQC''']] protocol where client prepares and sends the input states to the Server. If the task performed by the Server can be verified by the Client, the protocol is Verifiable Universal Blind Quantum Computation (VUBQC). Same as UBQC, VUBQC can also be realised by [[Prepare and Send Verifiable Universal Blind Quantum Computation|'''Prepare and Send VUBQC''']]. | ||
===Classical Online Communication-Quantum Online Communication=== | ===Classical Online Communication-Quantum Online Communication=== | ||
It involves a partially quantum Client perform quantum and classical communication throughout the protocol. The Client and Server then exchange classical messages during the computation phase. Universal Blind Quantum Computation (UBQC) is a protocol falling under this category. In this protocol Client hides his input, output and computation from the Server using [[Supplementary Information#Measurement Based Quantum Computation|MBQC]] by sending hidden quantum states to the Server. Such UBQC protocols can be realised by a [[Measurement Only-Universal Blind Quantum Computation|Measurement Only UBQC]] protocol where the client measures some known quantum state prepared by server in a rotated basis to generate input states. Same as UBQC, VUBQC can also be realised by [[Measurement Only Verifiable Universal Blind Quantum Computation|Measurement Only VUBQC]] protocols. Version for quantum input/output is also available in the descriptions. | It involves a partially quantum Client perform quantum and classical communication throughout the protocol. The Client and Server then exchange classical messages during the computation phase. Universal Blind Quantum Computation (UBQC) is a protocol falling under this category. In this protocol Client hides his input, output and computation from the Server using [[Supplementary Information#Measurement Based Quantum Computation|MBQC]] by sending hidden quantum states to the Server. Such UBQC protocols can be realised by a [[Measurement Only-Universal Blind Quantum Computation|Measurement Only UBQC]] protocol where the client measures some known quantum state prepared by server in a rotated basis to generate input states. Same as UBQC, VUBQC can also be realised by [[Measurement Only Verifiable Universal Blind Quantum Computation|Measurement Only VUBQC]] protocols. Version for quantum input/output is also available in the descriptions. |