Full Quantum state tomography with Maximum Likelihood Estimation: Difference between revisions

Jump to navigation Jump to search
 
Line 76: Line 76:
* Formula for <math>\hat{\rho_p}</math> is <math>\hat{\rho_p}(t) = \hat{T^{\dagger}}(t) \hat{T}(t) / tr\{ \hat{T}^{\dagger}(t) \hat{T}(t)\}</math>. Here <math>\hat{T}(t)</math> is,<math> \hat{T}(t) = \begin{bmatrix}
* Formula for <math>\hat{\rho_p}</math> is <math>\hat{\rho_p}(t) = \hat{T^{\dagger}}(t) \hat{T}(t) / tr\{ \hat{T}^{\dagger}(t) \hat{T}(t)\}</math>. Here <math>\hat{T}(t)</math> is,<math> \hat{T}(t) = \begin{bmatrix}
             t_1 & 0 & ... & 0 \\
             t_1 & 0 & ... & 0 \\
             t_{2^n + 1} + it_{2^n+2} & t_2 & ... & 0 \\
             t_{2^d + 1} + it_{2^d+2} & t_2 & ... & 0 \\
             ... & ... & ... & 0 \\  
             ... & ... & ... & 0 \\  
             t_{4^n -1} + it_{4^n} &  t_{4^n -3} + it_{4^n - 2} &  t_{4^n - 5} + it_{4^n - 4} &  t_{2^n}
             t_{4^d -1} + it_{4^d} &  t_{4^d -3} + it_{4^d - 2} &  t_{4^d - 5} + it_{4^d - 4} &  t_{2^d}
           \end{bmatrix}
           \end{bmatrix}
     </math>
     </math>
* Find the minimum of the <math>L(t_1, t_2, ..., t_{n^2})</math> using the formula  <math>
* Find the minimum of the <math>L(t_1, t_2, ..., t_{d^2})</math> using the formula  <math>
         L(t_1, t_2, ..., t_{n^2}) = \sum_j \frac{(N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle - p_j)^2}{2N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle}
         L(t_1, t_2, ..., t_{d^2}) = \sum_j \frac{(N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{d^2})|E_j\rangle - p_j)^2}{2N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{d^2})|E_j\rangle}
     </math>
     </math>
* <math>\hat{\rho_p}</math> can be reconstructed from the values of <math>t_i</math>.
* <math>\hat{\rho_p}</math> can be reconstructed from the values of <math>t_i</math>.
Anonymous user

Navigation menu