Full Quantum state tomography with Maximum Likelihood Estimation: Difference between revisions
Jump to navigation
Jump to search
Full Quantum state tomography with Maximum Likelihood Estimation (edit)
Revision as of 10:38, 6 June 2023
, 6 June 2023→Procedure Description
Line 76: | Line 76: | ||
* Formula for <math>\hat{\rho_p}</math> is <math>\hat{\rho_p}(t) = \hat{T^{\dagger}}(t) \hat{T}(t) / tr\{ \hat{T}^{\dagger}(t) \hat{T}(t)\}</math>. Here <math>\hat{T}(t)</math> is,<math> \hat{T}(t) = \begin{bmatrix} | * Formula for <math>\hat{\rho_p}</math> is <math>\hat{\rho_p}(t) = \hat{T^{\dagger}}(t) \hat{T}(t) / tr\{ \hat{T}^{\dagger}(t) \hat{T}(t)\}</math>. Here <math>\hat{T}(t)</math> is,<math> \hat{T}(t) = \begin{bmatrix} | ||
t_1 & 0 & ... & 0 \\ | t_1 & 0 & ... & 0 \\ | ||
t_{2^ | t_{2^d + 1} + it_{2^d+2} & t_2 & ... & 0 \\ | ||
... & ... & ... & 0 \\ | ... & ... & ... & 0 \\ | ||
t_{4^ | t_{4^d -1} + it_{4^d} & t_{4^d -3} + it_{4^d - 2} & t_{4^d - 5} + it_{4^d - 4} & t_{2^d} | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
* Find the minimum of the <math>L(t_1, t_2, ..., t_{ | * Find the minimum of the <math>L(t_1, t_2, ..., t_{d^2})</math> using the formula <math> | ||
L(t_1, t_2, ..., t_{ | L(t_1, t_2, ..., t_{d^2}) = \sum_j \frac{(N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{d^2})|E_j\rangle - p_j)^2}{2N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{d^2})|E_j\rangle} | ||
</math> | </math> | ||
* <math>\hat{\rho_p}</math> can be reconstructed from the values of <math>t_i</math>. | * <math>\hat{\rho_p}</math> can be reconstructed from the values of <math>t_i</math>. |