Dual Basis Measurement Based Protocol: Difference between revisions

Jump to navigation Jump to search
Line 34: Line 34:
*'''Setup phase:'''
*'''Setup phase:'''
# <p>One of the voters prepares <math> N+N2^{\delta_0}</math> states of the form <math>|D_1\rangle=\dfrac{1}{\sqrt{m^{N-1}}}\sum_{\sum_{k=1}^{N}i_k=0\text{ } mod \text{ }c}|i_1\rangle|i_2\rangle...|i_N\rangle </math> and <math> 1 + N2^{\delta_0}</math> states of the form <math> |D_2\rangle=\dfrac{1}{\sqrt{N!}}\sum_{(i_1,i_2,...,i_N)\in P_N}|i_1\rangle|i_2\rangle...|i_N\rangle </math>. </p> Each voter <math>V_k</math> receives kth particle from each of the states.
# <p>One of the voters prepares <math> N+N2^{\delta_0}</math> states of the form <math>|D_1\rangle=\dfrac{1}{\sqrt{m^{N-1}}}\sum_{\sum_{k=1}^{N}i_k=0\text{ } mod \text{ }c}|i_1\rangle|i_2\rangle...|i_N\rangle </math> and <math> 1 + N2^{\delta_0}</math> states of the form <math> |D_2\rangle=\dfrac{1}{\sqrt{N!}}\sum_{(i_1,i_2,...,i_N)\in P_N}|i_1\rangle|i_2\rangle...|i_N\rangle </math>. </p> Each voter <math>V_k</math> receives kth particle from each of the states.
# Voter <math>V_k</math> chooses at random <math>2^{\delta_0}</math> of the <math>|D_1\rangle</math> states. The other voters measure half of their particles in the computational and half in the Fourier basis. Whenever the chosen basis is computational, the measurement results need to add up to 0, while when the basis is the Fourier, the measurement results are all the same. All voters simultaneously broadcast their results and if one of them notices a discrepancy, the protocol aborts.<p> The states <math>|D_2\rangle</math> are similarly checked.</p>
# Voter <math>V_k</math> chooses at random <math>2^{\delta_0}</math> of the <math>|D_1\rangle</math> states. The other voters measure half of their particles in the computational and half in the Fourier basis.if the chosen basis is computational:
** the measurement results need to add up to 0,** else: the measurement results are all the same. All voters simultaneously broadcast their results and if one of them notices a discrepancy, the protocol aborts.<p> The states <math>|D_2\rangle</math> are similarly checked.</p>
#<p> All voters measure their qudits in the computational basis.</p> Then each <math>V_k</math> holds a blank ballot of dimension N with the measurement outcomes corresponding to parts of <math>|D_1\rangle </math> states <math>B_k = [\xi_k^{1}...\xi_k^{sk_k}...\xi_k^{N}]^{T}</math> and a unique index, <math>sk_k \in \{1,...,N\}</math> from the measurement outcome of the qudit that belongs to <math>|D_2\rangle</math>.
#<p> All voters measure their qudits in the computational basis.</p> Then each <math>V_k</math> holds a blank ballot of dimension N with the measurement outcomes corresponding to parts of <math>|D_1\rangle </math> states <math>B_k = [\xi_k^{1}...\xi_k^{sk_k}...\xi_k^{N}]^{T}</math> and a unique index, <math>sk_k \in \{1,...,N\}</math> from the measurement outcome of the qudit that belongs to <math>|D_2\rangle</math>.


Navigation menu