Full Quantum state tomography with Maximum Likelihood Estimation: Difference between revisions

Jump to navigation Jump to search
Line 81: Line 81:
           \end{bmatrix}
           \end{bmatrix}
     </math>
     </math>
* Find the minimum of the <math>L(t_1, t_2, ..., t_{n^2})</math> using the above formula  <math>
* Find the minimum of the <math>L(t_1, t_2, ..., t_{n^2})</math> using the formula  <math>
         L(t_1, t_2, ..., t_{n^2}) = \sum_j \frac{(N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle - p_j)^2}{2N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle}
         L(t_1, t_2, ..., t_{n^2}) = \sum_j \frac{(N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle - p_j)^2}{2N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle}
     </math>
     </math>
Write
153

edits

Navigation menu