Write
153
edits
Line 81: | Line 81: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
* Find the minimum of the <math>L(t_1, t_2, ..., t_{n^2})</math> using the | * Find the minimum of the <math>L(t_1, t_2, ..., t_{n^2})</math> using the formula <math> | ||
L(t_1, t_2, ..., t_{n^2}) = \sum_j \frac{(N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle - p_j)^2}{2N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle} | L(t_1, t_2, ..., t_{n^2}) = \sum_j \frac{(N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle - p_j)^2}{2N\langle E_j|\hat{\rho_p}(t_1, t_2, ..., t_{n^2})|E_j\rangle} | ||
</math> | </math> |