Write, autoreview, editor, reviewer
3,129
edits
Line 1: | Line 1: | ||
==Functionality== | ==Functionality== | ||
Quantum Computers perform task which are intractable for classical computers. The basic question here would be, "How should one verify the result of a quantum computer? This task is known as quantum verification or verification of quantum computation. [https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bqp BQP] is the class of problems that can be solved by a quantum computer and [https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bpp BPP] is the class of problems that can be solved by a classical computer. BPP is contained in BQP and hence, there are problems a quantum computer would solve that are intractable for a classical computer, to put it simply. Thus, if in future, an untrusted company claims to have built a quantum computer, how can the consumer be sure of the [https://people.eecs.berkeley.edu/~sanjamg/classes/cs276-fall14/scribe/lec09.pdf correctness] of the results when he/she (the consumer) cannot compare the results predicted by the proposed quantum computer? This problem is addressed by the functionality, 'verification of quantum computers'. Verification of universal quantum computation targets every computation that can be performed by a quantum computer.<br/><br/> | Quantum Computers perform task which are intractable for classical computers. The basic question here would be, "How should one verify the result of a quantum computer? This task is known as quantum verification or verification of quantum computation. [https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bqp BQP] is the class of problems that can be solved by a quantum computer and [https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bpp BPP] is the class of problems that can be solved by a classical computer. BPP is contained in BQP and hence, there are problems a quantum computer would solve that are intractable for a classical computer, to put it simply. Thus, if in future, an untrusted company claims to have built a quantum computer, how can the consumer be sure of the [https://people.eecs.berkeley.edu/~sanjamg/classes/cs276-fall14/scribe/lec09.pdf correctness] of the results when he/she (the consumer) cannot compare the results predicted by the proposed quantum computer? This problem is addressed by the functionality, 'verification of quantum computers'. Verification of universal quantum computation targets every computation that can be performed by a quantum computer.<br/><br/> | ||
'''Tags:''' [[:Category: Quantum Functionality|Quantum Functionality]], [[Category: Quantum Functionality]] [[:Category:Universal Task|Universal Task]][[Category:Universal Task]] | '''Tags:''' [[:Category: Quantum Functionality|Quantum Functionality]], [[Category: Quantum Functionality]] [[:Category:Universal Task|Universal Task]][[Category:Universal Task]], [[Classical Verification of Universal Quantum Computation]], [[Verification of Sub-Universal Quantum Computation]], [[Verification of NP-complete problems]] | ||
==Protocols== | ==Protocols== |