Write, autoreview, editor, reviewer
3,129
edits
mNo edit summary |
|||
Line 76: | Line 76: | ||
===Subroutines=== | ==='''Subroutines'''=== | ||
*<span style="font-variant:small-caps">Parity</span> | |||
''Input'': <math>\{ x_i \}_{i=1}^n</math>. | ''Input'': <math>\{ x_i \}_{i=1}^n</math>. | ||
Line 89: | Line 89: | ||
# The value <math>z=\bigoplus_{j=1}^n z_j</math> is computed, which equals <math>y_i</math>. | # The value <math>z=\bigoplus_{j=1}^n z_j</math> is computed, which equals <math>y_i</math>. | ||
*<span style="font-variant:small-caps">LogicalOR</span>* | |||
''Input'': <math>\{ x_i \}_{i=1}^n</math>, security parameter <math>q</math>. | ''Input'': <math>\{ x_i \}_{i=1}^n</math>, security parameter <math>q</math>. | ||
Line 101: | Line 101: | ||
## Repeat steps 2(a) - 2(b) <math>q</math> times in total. If the result of <span style="font-variant:small-caps">Parity</span> is never <math>1</math>, then <math>y_i = 0</math>. | ## Repeat steps 2(a) - 2(b) <math>q</math> times in total. If the result of <span style="font-variant:small-caps">Parity</span> is never <math>1</math>, then <math>y_i = 0</math>. | ||
*<span style="font-variant:small-caps">Notification</span> | |||
''Input'': Security parameter <math>q</math>, <math>\mathcal{S}</math>'s choice of <math>\mathcal{R}</math> is player <math>r</math>. | ''Input'': Security parameter <math>q</math>, <math>\mathcal{S}</math>'s choice of <math>\mathcal{R}</math> is player <math>r</math>. | ||
Line 114: | Line 114: | ||
# If player <math>i</math> obtained <math>y_i = 1</math>, then she is <math>\mathcal{R}</math>. | # If player <math>i</math> obtained <math>y_i = 1</math>, then she is <math>\mathcal{R}</math>. | ||
*<span style="font-variant:small-caps">RandomBit</span> | |||
''Input'': All: parameter <math>q</math>. <math>\mathcal{S}</math>: distribution <math>D</math>. | ''Input'': All: parameter <math>q</math>. <math>\mathcal{S}</math>: distribution <math>D</math>. | ||
Line 133: | Line 133: | ||
# The state passes the verification test if <math>\bigoplus_j Y_j=\frac{1}{\pi} \sum_j \theta_j \pmod 2.</math> | # The state passes the verification test if <math>\bigoplus_j Y_j=\frac{1}{\pi} \sum_j \theta_j \pmod 2.</math> | ||
*<span style="font-variant:small-caps">Anonymous Transmission</span> | |||
''Input'': <math>n</math> players share a GHZ state. | ''Input'': <math>n</math> players share a GHZ state. |