Prepare and Measure Quantum Digital Signature: Difference between revisions

Jump to navigation Jump to search
Line 102: Line 102:
##No explicit security proof provided.
##No explicit security proof provided.
#[https://arxiv.org/abs/1505.07509 AWA (2015)] security proof for generalisation of [https://arxiv.org/abs/1403.5551  WDKA (2015)] and [https://arxiv.org/abs/1309.1375 DWA (2013)] to more than two recipients case.
#[https://arxiv.org/abs/1505.07509 AWA (2015)] security proof for generalisation of [https://arxiv.org/abs/1403.5551  WDKA (2015)] and [https://arxiv.org/abs/1309.1375 DWA (2013)] to more than two recipients case.
#[https://www.researchgate.net/publication/280062082_Practical_Quantum_Digital_Signature YFC (2016)] first QDS scheme without authenticated (trusted) quantum channels. Demonstrates one protocol with two implementation, two copies of single photon method and  decoy state method. First uses single qubit photons in three bases; Private key: classical description of states, Public key: pair of [[non-orthogonal states]] in any two of the three bases.  
#[https://arxiv.org/abs/1507.03333 YFC (2016)] first QDS scheme without authenticated (trusted) quantum channels. Demonstrates one protocol with two implementation, two copies of single photon method and  decoy state method. First uses single qubit photons in three bases; Private key: classical description of states, Public key: pair of [[non-orthogonal states]] in any two of the three bases.  
##'''Requires''' authenticated classical channels, [[polarisation measurement]] in three bases, [[Unambiguous State Discrimination (USD)]] (State Elimination), uses quantum correlations to check authentication.  Decoy State method uses [[Coherent States|phase-randomised weak coherent states]], [[50:50 Beam Splitter (BS)]].  
##'''Requires''' authenticated classical channels, [[polarisation measurement]] in three bases, [[Unambiguous State Discrimination (USD)]] (State Elimination), uses quantum correlations to check authentication.  Decoy State method uses [[Coherent States|phase-randomised weak coherent states]], [[50:50 Beam Splitter (BS)]].  
##Security: [[Information-theoretic]].
##Security: [[Information-theoretic]].
#[https://www.researchgate.net/publication/280034032_Secure_Quantum_Signatures_Using_Insecure_Quantum_Channels AWKA (2015)] QDS scheme without authenticated quantum channels using parameter estimation phase. Uses a Key Generation Protocol (KGP) where noise threshold for Seller-Buyer and Seller-Verifier is better than when distilling secret key from QKD. Seller sends different key to Buyer and Verifier using KGP. This anomaly is justifiable due to symmetrisation.
#[https://arxiv.org/abs/1507.02975 AWKA (2015)] QDS scheme without authenticated quantum channels using parameter estimation phase. Uses a Key Generation Protocol (KGP) where noise threshold for Seller-Buyer and Seller-Verifier is better than when distilling secret key from QKD. Seller sends different key to Buyer and Verifier using KGP. This anomaly is justifiable due to symmetrisation.
##'''Requires''' authenticated classical channels, [[Decoy State QKD]] setup.  
##'''Requires''' authenticated classical channels, [[Decoy State QKD]] setup.  
##Security: [[Information-theoretic]].
##Security: [[Information-theoretic]].
#[https://www.nature.com/articles/srep09231 WCRZ (2015)] demonstrates sending multi-bit classical messages using [https://www.researchgate.net/publication/280034032_Secure_Quantum_Signatures_Using_Insecure_Quantum_Channels AWKA (2015)] or other similar protocols.</br>
#[https://www.nature.com/articles/srep09231 WCRZ (2015)] demonstrates sending multi-bit classical messages using [https://arxiv.org/abs/1507.02975 AWKA (2015)] or other similar protocols.</br>
#[http://iopscience.iop.org/article/10.1088/1742-6596/766/1/012021 MH (2016)] security proof for generalisation of [https://www.researchgate.net/publication/280034032_Secure_Quantum_Signatures_Using_Insecure_Quantum_Channels AWKA (2015)] to more than two recipients case.
#[http://iopscience.iop.org/article/10.1088/1742-6596/766/1/012021 MH (2016)] security proof for generalisation of [https://arxiv.org/abs/1507.02975 AWKA (2015)] to more than two recipients case.
*'''Experimental Papers'''
*'''Experimental Papers'''
#[https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.113.040502 CDDWCEJB (2014)] first experimental demonstration of a QDS scheme without quantum memory, implements a variant of [https://arxiv.org/abs/1309.1375 DWA (2013)]. Uses unambiguous state elimination (USE) instead of unambiguous state determination (USD)
#[https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.113.040502 Collins et al (2014)] first experimental demonstration of a QDS scheme without quantum memory, implements a variant of [https://arxiv.org/abs/1309.1375 DWA (2013)]. Uses unambiguous state elimination (USE) instead of unambiguous state determination (USD)
##Per half-bit message: rate=1.4 bits per second, security bound=0.01%, Length of the key (L)= <math>10^{13}</math>
##Per half-bit message: rate=1.4 bits per second, security bound=0.01%, Length of the key (L)= <math>10^{13}</math>
#[https://researchportal.hw.ac.uk/en/publications/experimental-demonstration-of-kilometer-range-quantum-digital-sig DCKAWDJAB(2015)] Implements [https://arxiv.org/abs/1403.5551  WDKA (2015)].
#[https://arxiv.org/abs/1509.07827 Donaldson et al (2015)] Implements [https://arxiv.org/abs/1403.5551  WDKA (2015)].
##Uses [[Coherent States|phase encoded coherent states]]
##Uses [[Coherent States|phase encoded coherent states]]
## Per half a bit message: Transmission Distance(d)=500 m, Length of the key(L)=<math>1.93*10^9</math> for security 0.01%, estimated time to sign (<math>t</math>)=20 seconds, channel loss= 2.2 dBkm<math>^{-1}</math> at <math>\lambda=850m</math>
## Per half a bit message: Transmission Distance(d)=500 m, Length of the key(L)=<math>1.93*10^9</math> for security 0.01%, estimated time to sign (<math>t</math>)=20 seconds, channel loss= 2.2 dBkm<math>^{-1}</math> at <math>\lambda=850m</math>
#[https://www.ncbi.nlm.nih.gov/pubmed/27805641 CAFHSTTABS (2016)] Implements modified [https://www.researchgate.net/publication/280034032_Secure_Quantum_Signatures_Using_Insecure_Quantum_Channels AWKA (2015)]
#[https://www.ncbi.nlm.nih.gov/pubmed/27805641 Collins et al (2016)] Implements modified [https://arxiv.org/abs/1507.02975 AWKA (2015)]
##Uses differential phase shift QKD for QDS
##Uses differential phase shift QKD for QDS
## message signing rate= 1 or 2 bits per second for security parameter=0.0001, Length of keys(L)=2Mbits, Transmission distance=90 km, QBER=1.08%, attenuation=0.32 dBkm<math>^{-1}</math>
## message signing rate= 1 or 2 bits per second for security parameter=0.0001, Length of keys(L)=2Mbits, Transmission distance=90 km, QBER=1.08%, attenuation=0.32 dBkm<math>^{-1}</math>
#[https://www.nature.com/articles/s41598-017-03401-9 CAFHSTTSAB (2017)] Implements modified [https://www.researchgate.net/publication/280034032_Secure_Quantum_Signatures_Using_Insecure_Quantum_Channels  AWKA (2015)] using DPS QKD  
#[https://www.nature.com/articles/s41598-017-03401-9 Collins et al (2017)] Implements modified [https://www.researchgate.net/publication/280034032_Secure_Quantum_Signatures_Using_Insecure_Quantum_Channels  AWKA (2015)] using DPS QKD  
##Per half a bit message: Channel loss=43 dB, transmission distance= 132 km, security parameter=<math>10^{-4}</math>
##Per half a bit message: Channel loss=43 dB, transmission distance= 132 km, security parameter=<math>10^{-4}</math>
#[https://www.researchgate.net/publication/305809099_Experimental_Quantum_Digital_Signature_over_102_km YFLTWYZCWZCCP (2018)] Implements decoy state QDS scheme in [https://www.researchgate.net/publication/280062082_Practical_Quantum_Digital_Signature YFC (2016)]  
#[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.032334 Yin et al (2018)] Implements decoy state QDS scheme in [https://arxiv.org/abs/1507.03333 YFC (2016)]  
##Uses nanowire single photon detectors (SNSPD), BB84 state encoding, decoy state modulation.
##Uses nanowire single photon detectors (SNSPD), BB84 state encoding, decoy state modulation.
## Signed a 32 bit message "USTC" over transmission distance 102 km, authentication threshold =2%, verification threshold=0.6%, security bound parameter=<math>10^{-5}</math>, estimated time=360 seconds for one bit message
## Signed a 32 bit message "USTC" over transmission distance 102 km, authentication threshold =2%, verification threshold=0.6%, security bound parameter=<math>10^{-5}</math>, estimated time=360 seconds for one bit message
#[https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.10.034033 ZZDZGW (2018)] Implements a [[Decoy State QKD|passive decoy state]] protocol which uses Passive BB84 Key Generation protocol (KGP) to share public keys from Bob and Charlie to Alice.
#[https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.10.034033 Zhang et al (2018)] Implements a [[Decoy State QKD|passive decoy state]] protocol which uses Passive BB84 Key Generation protocol (KGP) to share public keys from Bob and Charlie to Alice.
## Uses parametric down-conversion (PDC) source, secure to coherent attacks
## Uses parametric down-conversion (PDC) source, secure to coherent attacks
## Per half a bit message:Transmission Distance(d)=100 km, QBER(%)=<math>2.95%-3.28%</math> for security parameter=<math>10^{-4}</math>, attenuation=45.8 dB at 200 km estimated time to sign (<math>t</math>)=7 seconds
## Per half a bit message:Transmission Distance(d)=100 km, QBER(%)=<math>2.95%-3.28%</math> for security parameter=<math>10^{-4}</math>, attenuation=45.8 dB at 200 km estimated time to sign (<math>t</math>)=7 seconds
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu