Gottesman and Chuang Quantum Digital Signature: Difference between revisions

Jump to navigation Jump to search
Line 12: Line 12:
*'''Distribution:''' For each message bit (say 0 and 1) sender selects some (say M) classical bit strings. These are chosen to be her private keys for that message bit. Using this private key as input, Sender generates output of the quantum one-way function/map, which she calls her public key and as assumed above, distributes them to each recipient, for each message bit. In the end of this step, each recipient has 2M public keys, M for message bit 0 and M for message bit 1.  
*'''Distribution:''' For each message bit (say 0 and 1) sender selects some (say M) classical bit strings. These are chosen to be her private keys for that message bit. Using this private key as input, Sender generates output of the quantum one-way function/map, which she calls her public key and as assumed above, distributes them to each recipient, for each message bit. In the end of this step, each recipient has 2M public keys, M for message bit 0 and M for message bit 1.  
** '''Quantum One Way Functions:'''
** '''Quantum One Way Functions:'''
** '''Key Distribution:''' The author suggests a few methods for key distribution. One of them is the assumption of a trusted third party who receives public keys from Sender, checks all the keys using [[SWAP Test]] and then if test is passed by each key sent, the trusted party distributes it to the recipients. A second method eliminates the requirement of a trusted third party and instead requires Sender to send two copies of each public key to each recipient, such that, in the end each recipient has 4M keys (2M public keys for each message bit). The recipients perform Swap test for their supposedly identical copies of public keys. Then, if passed, they send one copy to another recipient, who again performs the SWAP test between the received copy and his copy of public key.
** '''Key Distribution:''' The author suggests a few methods for key distribution. One of them is the assumption of a trusted third party who receives public keys from Sender, checks all the keys using [[SWAP Test]] and then if test is passed by each key sent, the trusted party distributes it to the recipients. A second method eliminates the requirement of a trusted third party and instead requires Sender to send two copies of each public key to each recipient, such that, in the end each recipient has 4M keys (2M public keys for each message bit). Both Buyer and Verifier perform Swap test on their supposedly identical copies of public keys. Then, if passed, Buyer sends one copy of his public key to the Verifier, who then performs the SWAP test between the received copy and his copy of public key.
*'''Messaging:''' Sender sends her message bit with the associated private keys. The Receiver performs the map on the private key (quantum one way function takes the sent private key as input) and the compares the output thus generated with the public key received in the previous stage. If the number of unmatched bits are below rejection threshold, the message is declared valid, else invalid. If the number of unmatched bits is below acceptance threshold, it is declared transferable, else not transferable.
*'''Messaging:''' Sender sends her message bit with the associated private keys to the Buyer. Buyer performs the map on the private key (quantum one way function takes the sent private key as input) and then compares the output thus generated with the public key received in the distribution stage. If the number of unmatched bits are below rejection threshold, the message is declared valid, else invalid. If the number of unmatched bits is below acceptance threshold, it is declared transferable, else not transferable.


==Properties==
==Properties==
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu