Write, autoreview, editor, reviewer
3,129
edits
No edit summary |
|||
Line 1: | Line 1: | ||
The [[ | The [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.050301|example protocol]] achieves the functionality of [[Secure Client- Server Delegated Computation|Delegated Computation]] which is the task of assigning quantum computation to an untrusted device while maintaining privacy of the computation. It can be done via classical online/offline and quantum online/offline communication. Following description deals with a method which involves quantum online and classical online communication, called Blind Quantum Computation. It comes with the properties of correctness i.e. if both parties follow the protocol the final outcome is correct, blindness i.e. the Client to have Server carry out a quantum computation for her (Client) such that the Client’s inputs, outputs and circuit used for computation remain perfectly private from the Server and Universality i.e. the following protocol can implement any quantum computation. | ||
'''Tags''' [[Two Party Protocols|Two Party]], [[Universal Task|Universal Task]], [[Quantum Functionality|Quantum Functionality]], [[Secure Delegated Quantum Computation|Secure Delegated Quantum Computation]], Quantum Online communication, Classical Online communication, [[Supplementary Information#Measurement Based Quantum Computation|Measurement Based Quantum Computation (MBQC)]]. | '''Tags''' [[Two Party Protocols|Two Party]], [[Universal Task|Universal Task]], [[Quantum Functionality|Quantum Functionality]], [[Secure Delegated Quantum Computation|Secure Delegated Quantum Computation]], Quantum Online communication, Classical Online communication, [[Supplementary Information#Measurement Based Quantum Computation|Measurement Based Quantum Computation (MBQC)]]. | ||