Prepare and Measure Quantum Digital Signature: Difference between revisions

Jump to navigation Jump to search
Line 47: Line 47:
**provides security against forgery, i.e. any recipient (verifier) with high probability rejects any message which was not originally sent by the seller herself. Forging probability is given by the formula, <math>P(\text{forge})\le e^{-(c_{\min}-2s_v)^2L}</math>, where <math>c_{\min}</math> is 3/8 (calculated using uncertainty principle).
**provides security against forgery, i.e. any recipient (verifier) with high probability rejects any message which was not originally sent by the seller herself. Forging probability is given by the formula, <math>P(\text{forge})\le e^{-(c_{\min}-2s_v)^2L}</math>, where <math>c_{\min}</math> is 3/8 (calculated using uncertainty principle).


==Pseudo Code==
==Pseudocode==


<u>'''Stage 1'''</u> Distribution
<u>'''Stage 1'''</u> Distribution
Line 91: Line 91:
##Verifier counts the number of mismatches (<math>V^m_l=B^m_l</math>) and returns <math>S_v</math>
##Verifier counts the number of mismatches (<math>V^m_l=B^m_l</math>) and returns <math>S_v</math>
# If <math>S_v < s_vL/2</math>, Verifier accepts m else he aborts
# If <math>S_v < s_vL/2</math>, Verifier accepts m else he aborts
==Further Information==
==Further Information==
The protocol under discussion (1) was the first version of Quantum Digital Signatures with only prepare and measure QKD components. The assumption authenticated quantum channel would render it useless as authenticated quantum channel is a more complex protocol. Thus in (6), a variant of this protocol overcomes this assumption by using a Key generation protocol (not QKD) for authentication where, instead of Seller, Buyer and Verifier sends quantum public keys to the Seller to measure in randomly chosen basis and generate her private keys. Following description for various papers on QDS protocols and their variants have been written keeping in mind the hardware requirements, assumptions, security and method used. One of the papers discusses generalisation of protocols to more than 3 parties and another one discusses security for iterating in case of sending multiple bits.
The protocol under discussion (1) was the first version of Quantum Digital Signatures with only prepare and measure QKD components. The assumption authenticated quantum channel would render it useless as authenticated quantum channel is a more complex protocol. Thus in (6), a variant of this protocol overcomes this assumption by using a Key generation protocol (not QKD) for authentication where, instead of Seller, Buyer and Verifier sends quantum public keys to the Seller to measure in randomly chosen basis and generate her private keys. Following description for various papers on QDS protocols and their variants have been written keeping in mind the hardware requirements, assumptions, security and method used. One of the papers discusses generalisation of protocols to more than 3 parties and another one discusses security for iterating in case of sending multiple bits.
Write
262

edits

Navigation menu