Blind Delegation of Quantum Digital Signature: Difference between revisions

Jump to navigation Jump to search
Line 60: Line 60:




==Pseudo Code==
==Pseudocode==


Every pair of parties share different quantum key matrices <math>K_{AB}</math>, <math>K_{AC}</math> and <math>K_{BC}</math> respectively using Simon et al.’s QKD algorithm.
Every pair of parties share different quantum key matrices <math>K_{AB}</math>, <math>K_{AC}</math> and <math>K_{BC}</math> respectively using Simon et al.’s QKD algorithm.
Line 86: Line 86:
## The Verifier then un-blinds the message <math>M'</math> using <math>K_{AC}^k</math> to obtain the message <math>M</math>. <br/> <math> M_k = M'_k \times (K_{AC}^k)^{-1} </math>
## The Verifier then un-blinds the message <math>M'</math> using <math>K_{AC}^k</math> to obtain the message <math>M</math>. <br/> <math> M_k = M'_k \times (K_{AC}^k)^{-1} </math>
## He then checks if the determinant of <math>M</math> obtained from the signature is the same as <math>det(M)</math> obtained from the Owner. If it holds, he verifies the following equations: <br/> <math> det(S^k) = det(M'_kK_{BC}^k) = det(M'_k) \times det(T^n_p) </math> <br/> <math> = (-1)^ndet(M'_k) = (-1)^{2n}det(M_k) </math>
## He then checks if the determinant of <math>M</math> obtained from the signature is the same as <math>det(M)</math> obtained from the Owner. If it holds, he verifies the following equations: <br/> <math> det(S^k) = det(M'_kK_{BC}^k) = det(M'_k) \times det(T^n_p) </math> <br/> <math> = (-1)^ndet(M'_k) = (-1)^{2n}det(M_k) </math>
==Further Information==
==Further Information==
<div style='text-align: right;'>''*contributed by Natansh Mathur''</div>
<div style='text-align: right;'>''*contributed by Natansh Mathur''</div>
Write
262

edits

Navigation menu