GHZ-based Quantum Anonymous Transmission: Difference between revisions

Jump to navigation Jump to search
Line 30: Line 30:
<math>P_{\text{guess}}[S|C,S\notin \mathcal{A}] \leq \max_{i\in[n]} P[S=i|S\notin \mathcal{A}] = \frac{1}{n-t},</math></br>
<math>P_{\text{guess}}[S|C,S\notin \mathcal{A}] \leq \max_{i\in[n]} P[S=i|S\notin \mathcal{A}] = \frac{1}{n-t},</math></br>
<math>P_{\text{guess}}[R|C,S\notin \mathcal{A}] \leq \max_{i\in[n]} P[R=i|S\notin \mathcal{A}] = \frac{1}{n-t},</math></br>
<math>P_{\text{guess}}[R|C,S\notin \mathcal{A}] \leq \max_{i\in[n]} P[R=i|S\notin \mathcal{A}] = \frac{1}{n-t},</math></br>
where <math>\mathcal{A}</math> is the subset of <math>t</math> adversaries among <math>n</math> nodes and <math>C</math> is the register that contains all classical and quantum side information accessible to the adversaries. Note that this implies that the protocol is also traceless, since even if the adversary hijacks any <math>t\leq n-2</math> players and gains access to all of their classical and quantum information after the end of the protocol, she cannot learn the identities of <math>S</math> and <math>R</math>. For a formal argument see [[GHZ State based Quantum Anonymous Transmission#References|[6] ]].
where <math>\mathcal{A}</math> is the subset of <math>t</math> adversaries among <math>n</math> nodes and <math>C</math> is the register that contains all classical and quantum side information accessible to the adversaries. Note that this implies that the protocol is also traceless, since even if the adversary hijacks any <math>t\leq n-2</math> players and gains access to all of their classical and quantum information after the end of the protocol, she cannot learn the identities of <math>S</math> and <math>R</math>. For a formal argument see [[GHZ State based Quantum Anonymous Transmission#References|[6]]].


==Pseudocode==
==Pseudocode==
Write
262

edits

Navigation menu