BB84 Quantum Key Distribution: Difference between revisions

Jump to navigation Jump to search
Line 44: Line 44:
\epsilon_{\rm sec}= \epsilon_{\rm PA}+\epsilon_{\rm PE},</math>
\epsilon_{\rm sec}= \epsilon_{\rm PA}+\epsilon_{\rm PE},</math>
and the amount of key <math>\ell</math> that is generated is given by</br>
and the amount of key <math>\ell</math> that is generated is given by</br>
<math> \centering \begin{align}
<math> \begin{align}
\ell \geq & (1-\gamma)^2n (1-h(Q_X+\nu) -h(Q_Z)) \\ &-\sqrt{(1-\gamma)^2n}\big(4\log(2\sqrt{2}+1)(\sqrt{\log\frac{2}{\epsilon_{\rm PE}^2}}+ \sqrt{\log \frac{8}{{\epsilon'}_{\rm EC}^2}})) \\& -\log(\frac{8}{{\epsilon'}_{\rm EC}^2}+\frac{2}{2-\epsilon'_{\rm EC}})-\log (\frac{1}{\epsilon_{\rm EC}})- 2\log(\frac{1}{2\epsilon_{\rm PA}}) \end{align}</math>  
\ell \geq & (1-\gamma)^2n (1-h(Q_X+\nu) -h(Q_Z)) \\ &-\sqrt{(1-\gamma)^2n}\big(4\log(2\sqrt{2}+1)(\sqrt{\log\frac{2}{\epsilon_{\rm PE}^2}}+ \sqrt{\log \frac{8}{{\epsilon'}_{\rm EC}^2}})) \\& -\log(\frac{8}{{\epsilon'}_{\rm EC}^2}+\frac{2}{2-\epsilon'_{\rm EC}})-\log (\frac{1}{\epsilon_{\rm EC}})- 2\log(\frac{1}{2\epsilon_{\rm PA}})  
\end{align}
</math>  
</br>where <math>\nu = \sqrt{ \frac{(1+\gamma^2n)((1-\gamma)^2+\gamma^2)}{(1-\gamma)^2\gamma^4n^2}\log(\frac{1}{\epsilon_{\rm PE}}})</math>
</br>where <math>\nu = \sqrt{ \frac{(1+\gamma^2n)((1-\gamma)^2+\gamma^2)}{(1-\gamma)^2\gamma^4n^2}\log(\frac{1}{\epsilon_{\rm PE}}})</math>
and <math>h(\cdot)</math> is the [[binary entropy function]].  
and <math>h(\cdot)</math> is the [[binary entropy function]].  
Write
262

edits

Navigation menu