Write, autoreview, editor, reviewer
3,129
edits
(Created page with " The classical problem of Byzantine agreement (8) is about reaching agreement in a network of <math>n</math> players out of which <m...") |
|||
Line 58: | Line 58: | ||
## <math>R</math> picks a random bit <math>b' \in_R \{ 0,1 \}</math> and broadcasts <math>b'</math>. | ## <math>R</math> picks a random bit <math>b' \in_R \{ 0,1 \}</math> and broadcasts <math>b'</math>. | ||
## <math>R</math> applies a phase flip <math>Z</math> to her qubit, if <math>b \oplus \bigoplus_{j \in [N] \setminus \{S,R\}} m_j = 1</math>. <div style='text-align: right;'>''<math>S</math> and <math>R</math> share anonymous entanglement <math>|\Gamma\rangle_{SR} = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)</math>.''</div> | ## <math>R</math> applies a phase flip <math>Z</math> to her qubit, if <math>b \oplus \bigoplus_{j \in [N] \setminus \{S,R\}} m_j = 1</math>. <div style='text-align: right;'>''<math>S</math> and <math>R</math> share anonymous entanglement <math>|\Gamma\rangle_{SR} = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)</math>.''</div> | ||
# <math>S</math> uses the quantum teleportation circuit with input <math>\ | # <math>S</math> uses the quantum teleportation circuit with input <math>|\psi\rangle</math> and anonymous entanglement <math>|\Gamma\rangle_{SR}</math>, and obtains measurement outcomes <math>m_0, m_1</math>. | ||
# The players run a protocol to anonymously send bits <math>m_0,m_1</math> from <math>S</math> to <math>R</math> (see Discussion for details). | # The players run a protocol to anonymously send bits <math>m_0,m_1</math> from <math>S</math> to <math>R</math> (see Discussion for details). | ||
# <math>R</math> applies the transformation described by <math>m_0,m_1</math> on his part of <math>\ | # <math>R</math> applies the transformation described by <math>m_0,m_1</math> on his part of <math>|\Gamma\rangle_{SR}</math> and obtains <math>\ket{\psi}</math>. | ||
==Further Information== | ==Further Information== |