Arbitrated Quantum Digital Signature: Difference between revisions

Jump to navigation Jump to search
Add notations
(Created page with "The Arbitrated Quantum Signature protocol is quantum digital signature scheme where the public and private keys are classical in nature, however the signature cipher has a qua...")
 
(Add notations)
Line 54: Line 54:




* <math>|P\rangle</math>: Private key quantum state where <math>|P\rangle \in {(|\+\rangle, |\-\rangle, |1\rangle,|0\rangle\)^n}</math> and it is the quantum state
* <math>|P\rangle</math>: Private key quantum state where <math>|P\rangle \in \{|+\rangle, |-\rangle, |1\rangle, |0\rangle\}^n</math> and it is the quantum state:


<math>|P\rangle := H^{k_{pri}}|\phi\rangle_{s, t\oplus m}</math>
<math>|P\rangle := H^{k_{pri}}|\phi\rangle_{s, t\oplus m}</math>
 
* <math>P</math>: Classical 2n-bit for <math>n</math>-qubit <math>|P\rangle</math> where <math>|+\rangle</math> is encoded to 10, <math>|-\rangle</math> to 11, <math>|1\rangle</math> to 00 and <math>|0\rangle</math> is encoded to 01.
 
* <math>B_P</math>: This is the set of the basis of each qubit state in <math>|P\rangle</math>.
* $P$: Classical 2n-bit for $n$-qubit $\ket{P}$ where $\ket{+}$ is encoded to 10, $\ket{-}$ to 11, $\ket{1}$ to 00 and $\ket{0}$ is encoded to 01.
<math> B_P = Basis(|P\rangle) \in \{+,\times \}</math>
* $B_P$: This is the set of the basis of each qubit state in $\ket{P}$.
* <math>|F\rangle</math>: Quantum digital digest received by PKG.
    \begin{equation}
* <math>|F'\rangle</math>: Quantum digital digest generated by Verifier.
        B_P = Basis(\ket{P}) \in \{+,\times \}
* <math>u</math>: The most number of verifiers in this scheme.
    \end{equation}
* <math>w</math>: Safety parameter threshold for acceptance.
* $\ket{F}$: Quantum digital digest received by PKG.
* <math>w_0</math>: Security threshold decided in advance.
* $\ket{F}'$: Quantum digital digest generated by Verifier.
* <math>w'</math>: Number of times SWAP test is performed.
* $u$: The most number of verifiers in this scheme.
* <math>|V\rangle_{m, k_{pub},S}</math>: A quantum state, where
* $w$: Safety parameter threshold for acceptance.
<math>|V\rangle_{m, k_{pub},S} := Y^m H^{k_{pub}}|S\rangle_{k_{pri}, m}</math>
* $w_0$: Security threshold decided in advance.
This state is also expressed as <math>\beta|\phi\rangle_{k_{pri}\oplus s, t\oplus m}</math> where <math>\beta \in \{1, -1, \iota, -\iota\}</math>
* $w'$: Number of times SWAP test is performed.
* <math>|Q\rangle</math>: Result of Verifier's measurement of <math>|V\rangle_{m, k_{pub},S}</math>.
* $\ket{V}_{m, k_{pub},S}$: A quantum state, where
* <math>Q</math>: Classical bit string denoted as <math>Q \in \{00, 01, 10, 11\}^n</math>. It is proven that <math>P=Q</math>.
    \begin{equation}
* <math>\delta</math>: <math>\langle F|F\rangle'</math>, where <math>\delta \in [0,1)</math>.
        \ket{V}_{k_{pub},S} := Y^m H^{k_{pub}}\ket{S}_{k_{pri}, m}
    \end{equation}
    This state is also expressed as $\beta\ket{\phi}_{k_{pri}\oplus s, t\oplusm}$ where $\beta \in \{1, -1, \iota, -\iota\}$
* $\ket{Q}$: Result of Verifier's measurement of $\ket{V}_{m, k_{pub},S}$.
* $Q$: Classical bit string denoted as $Q \in \{00, 01, 10, 11\}^n$. It is proven that $P=Q$.
* $\delta$: $\braket{F}{F}'$, where $\delta \in [0,1)$.
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu