Device-Independent Quantum Key Distribution: Difference between revisions

Jump to navigation Jump to search
Line 71: Line 71:
<u>'''Stage 2'''</u> Error Correction</br>
<u>'''Stage 2'''</u> Error Correction</br>
* Sender and Receiver apply the error correction protocol <math>EC</math>, communicating script <math>O_{EC}</math> in the process.  
* Sender and Receiver apply the error correction protocol <math>EC</math>, communicating script <math>O_{EC}</math> in the process.  
# '''If''' <math>EC</math> aborts they abort the protocol
# '''If''' <math>EC</math> aborts, they abort the protocol
# '''Else''' they obtain raw keys <math>\tilde{A}_1^n</math> and <math>\tilde{B}_1^n</math>.
# '''Else''' they obtain raw keys <math>\tilde{A}_1^n</math> and <math>\tilde{B}_1^n</math>.
<u>'''Stage 3'''</u> Parameter estimation</br>
<u>'''Stage 3'''</u> Parameter estimation</br>
#Using <math>B_1^n</math> and <math>\tilde{B}_1^n</math>, Bob sets <math>C_i</math>
#Using <math>B_1^n</math> and <math>\tilde{B}_1^n</math>, Receiver sets <math>C_i</math>
##'''If''' <math>T_i=1</math>  and <math>A_i\oplus B_i=X_i\cdot Y_i</math> '''then''' <math>C_i=1</math>  
##'''If''' <math>T_i=1</math>  and <math>A_i\oplus B_i=X_i\cdot Y_i</math> '''then''' <math>C_i=1</math>  
##'''If''' <math>T_i=1</math>  and <math>A_i\oplus B_i=X_i\cdot Y_i</math> '''then''' <math>C_i=0</math>
##'''If''' <math>T_i=1</math>  and <math>A_i\oplus B_i=X_i\cdot Y_i</math> '''then''' <math>C_i=0</math>
Line 81: Line 81:
#He aborts '''If''' <math>\sum_j C_j<m\times \Bigg(\omega_{exp}-\delta_{est}}(1-(1-\gamma)^{s_{\max}\Bigg))
#He aborts '''If''' <math>\sum_j C_j<m\times \Bigg(\omega_{exp}-\delta_{est}}(1-(1-\gamma)^{s_{\max}\Bigg))
*\textit{i.e.}, if they do not achieve the expected violation.  
*\textit{i.e.}, if they do not achieve the expected violation.  
<u>'''Stage 4'''</u> Error correction
 
<u>'''Stage 5'''</u> Privacy amplification
<u>'''Stage 4'''</u> Privacy amplification
*<math>PA(\cdot,\cdot)</math> is a privacy amplification subroutine
# Sender and Receiver run <math>PA(A_1^{n'},\tilde{B}_1^{n'})</math> and obtain secret keys <math>K_A, K_B</math>;


==Further Information==
==Further Information==
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu