Phase Co-variant Cloning: Difference between revisions

Jump to navigation Jump to search
Line 22: Line 22:


==Notations==
==Notations==
*<math>|\psi(\phi)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{i\phi}|1\rangle):</math> Input equatorial state
*<math>|\psi(\phi)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{i\phi}|1\rangle):</math> Input equatorial state
*<math>T:</math> The general map for all the phase-covariant QCMs
*<math>T:</math> The general map for all the phase-covariant QCMs
*<math>\eta:</math> The shrinking factor, showing how the density matrix of the copies has been changed after the cloning process
*<math>\eta:</math> The shrinking factor, showing how the density matrix of the copies has been changed after the cloning process
*<math>U_{pc}:</math> The unitary transformation of the phase-covariant QCM without ancilla
*<math>U_{pc}:</math> The unitary transformation of the phase-covariant QCM without ancilla
*<math>U_{pca}:</math> The unitary transformation of the phase-covariant QCM with ancilla
*<math>U_{pca}:</math> The unitary transformation of the phase-covariant QCM with ancilla
*<math>\rho_A, \rho_B:</math> The reduced density matrix describing the state of subsystem <math>A(B)</math> after the cloning process
*<math>\rho_A, \rho_B:</math> The reduced density matrix describing the state of subsystem <math>A(B)</math> after the cloning process
*<math>|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle):</math> The Bell state. One of the [[maximally entangled]] states for 2 qubits
*<math>|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle):</math> The Bell state. One of the [[maximally entangled]] states for 2 qubits
*<math>\mathbb{I}:</math> The identity operation (matrix)
*<math>\mathbb{I}:</math> The identity operation (matrix)
*<math>\sigma_x, \sigma_y, \sigma_z:</math> [[Pauli Operators]] X,Y,Z  
*<math>\sigma_x, \sigma_y, \sigma_z:</math> [[Pauli Operators]] X,Y,Z  
*<math>F_A, F_B:</math> The fidelity of the subsystem <math>A(B)</math> showing how the first(second) copy is close to the original state. In the symmetric case, these fidelities are equal and the copies are identical.
*<math>F_A, F_B:</math> The fidelity of the subsystem <math>A(B)</math> showing how the first(second) copy is close to the original state. In the symmetric case, fidelity of A and B are equal and the copies are identical.
 
==Properties==
==Properties==
*Fidelity Claims
*Fidelity Claims
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu