Write, autoreview, editor, reviewer
3,129
edits
Line 20: | Line 20: | ||
*'''Pauli Gates(U):''' Single Qubit Gates I (Identity), X, Y, Z. All the gates in this set follow U2 = I | *'''Pauli Gates(U):''' Single Qubit Gates I (Identity), X, Y, Z. All the gates in this set follow U2 = I | ||
*'''Clifford Gates(C):''' Pauli Gates, Phase Gate, C-NOT. This set of gates can be simulated on classical computer. All the gates in this set follow CU=U’C, where U and U’ are two different Pauli gates depending on C | *'''Clifford Gates(C):''' Pauli Gates, Phase Gate, C-NOT. This set of gates can be simulated on classical computer. All the gates in this set follow CU=U’C, where U and U’ are two different Pauli gates depending on C | ||
*'''Toffoli Gate T:''' | *'''Toffoli Gate T:''' A three qubit gate that does not belong to Clifford Group | ||
*'''Universal Set of gates:''' This set consists of all Clifford gates and one Non-Clifford gate (T gate). If a model can realise Universal Set of gates, it can imlement any quantum computation efficiently. T gates follow UT = PaU0T, where P is the phase gate and U, U’ are any two Pauli gates depending on C. Parameter 1 is obtained from U, such that P0 = I, P1 = P. | *'''Universal Set of gates:''' This set consists of all Clifford gates and one Non-Clifford gate (T gate). If a model can realise Universal Set of gates, it can imlement any quantum computation efficiently. T gates follow UT = PaU0T, where P is the phase gate and U, U’ are any two Pauli gates depending on C. Parameter 1 is obtained from U, such that P0 = I, P1 = P. | ||