Phase Co-variant Cloning: Difference between revisions

Jump to navigation Jump to search
no edit summary
(Created page with " This example protocol achieves the functionality of Quantum Cloning Machine (QCM). Phase-covariant cloning describes is a special State Dependent N-M Cloning|state-...")
 
No edit summary
Line 48: Line 48:


==Pseudo Code==
==Pseudo Code==
'''Input:''' <math>|a\rangle^{\otimes N} \otimes |0\rangle^{\otimes M-N}</math> or <math>|b\rangle^{\otimes N} \otimes |0\rangle^{\otimes M-N}</math></br>
===General Information===
'''Output:''' <math>|\alpha_{NM}\rangle = (A + B)|a^M\rangle + (A - B)|b^M\rangle</math> or <math>|\beta_{NM}\rangle = (A - B)|a^M\rangle + (A + B)|b^M\rangle</math>
*The to-be-cloned states of the phase-covariant cloner are equatorial states of the form:</br>
#Perform a unitary on N input states of the form <math>|x\rangle^{\otimes N}</math>, with <math>x = a, b</math> and also on <math>(M-N)</math> blank states, which its action is discribed by:</br>
<math>|\psi(\phi)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{i\phi}|1\rangle)</math></br>
<math>|\alpha_{NM}\rangle = U_{NM} (|a\rangle^{\otimes N} \otimes |0\rangle^{\otimes M-N}) = (A + B)|a^M\rangle + (A - B)|b^M\rangle</math>,</br>
*Equatorial states could be written in density matrix representation as:</br>
<math>|\beta_{NM}\rangle = U_{NM} (|b\rangle^{\otimes N} \otimes |0\rangle^{\otimes M-N}) = (A - B)|a^M\rangle + (A + B)|b^M\rangle</math>, </br></br>
<math>|\psi(\phi)\rangle\langle\psi(\phi)| = \frac{1}{2}(\mathbb{I} + cos\phi\sigma_x + sin\phi\sigma_y)</math></br>
where,</br>
where <math>\sigma_x</math> and <math>\sigma_y</math> are [[Pauli Operators]].</br>
<math>A = \frac{1}{2}\sqrt{\frac{1 + S^N}{1 + S^M}}, \quad B = \frac{1}{2}\sqrt{\frac{1 - S^N}{1 - S^M}}</math>
*The action of a general phase-covariant QCM is described by a map $T$ acting as follows:</br>
<math>T(|\psi(\phi)\rangle\langle\psi(\phi)|) = \eta|\psi(\phi)\rangle\langle\psi(\phi)| + (1-\eta)\frac{\mathbb{I}}{2}</math></br>
where <math>\eta</math> is the shrinking factor. This relation holds for all <math>\phi</math>, which guarantees that the cloning machine to act equally well on all the equatorial states. Now we investigate different types of the protocol:
===Phase-covariant cloning without ancilla===
'''Input:''' <math>|\psi(\phi)\rangle|0\rangle</math>
'''Output:''' <math>\frac{1}{\sqrt{2}}(|00\rangle + cos\eta e^{i\phi}|10\rangle + sin\eta e^{i\phi} |01\rangle)</math>
#Perform a unitary transformation described as follows:</br>
<math>U_{pc}|00\rangle = |00\rangle</math></br>
<math>U_{pc}|10\rangle = cos\eta|10\rangle + sin\eta|01\rangle</math></br>
===Phase-covariant cloning with ancilla===
'''<u>Stage 1</u>''' Cloner state preparation
# Prepare a Bell state <math>|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)</math>
'''<u>stage 2</u>''' Cloner transformation</br>
'''Input:''' <math>|\psi(\phi)\rangle_{A}|\Phi^{+}\rangle_{BM}</math></br>
'''Output:''' <math>U_{pca}|\psi(\phi)\rangle_{A}|\Phi^{+}\rangle_{BM}</br>
# Perform the unitary transformation described as follows:</br>
<math>U_{pca}|0\rangle|0\rangle|0\rangle = |0\rangle|0\rangle|0\rangle</math></br>
<math>U_{pca}|1\rangle|0\rangle|0\rangle = (cos\eta|1\rangle|0\rangle + sin\eta|0\rangle|1\rangle)|0\rangle</math></br>
<math>U_{pca}|0\rangle|1\rangle|1\rangle = (cos\eta|0\rangle|1\rangle + sin\eta|1\rangle|0\rangle)|1\rangle</math></br>
<math>U_{pca}|1\rangle|1\rangle|1\rangle = |1\rangle|1\rangle|1\rangle</math></br>
'''<u>Stage 3</u>''' Discarding ancillary state
# Discard the extra state. mathematically, trace out the ancilla


==Further Information==
==Further Information==
The phase-covariant QCM has a remarkable application in quantum cryptography since it is used for some of the eavesdropping strategies on the [[BB84 Quantum Key Distribution|BB84 QKD]]. This is due to the fact that states which are being used as BB84 states, are equatorial states and these are the only states that the eavesdropper is interested in. Both protocols mentioned in [[Phase Variant Cloning#Pseudo Code|Pseudo Code]] can be used for this analysis.
The phase-covariant QCM has a remarkable application in quantum cryptography since it is used for some of the eavesdropping strategies on the [[BB84 Quantum Key Distribution|BB84 QKD]]. This is due to the fact that states which are being used as BB84 states, are equatorial states and these are the only states that the eavesdropper is interested in. Both protocols mentioned in [[Phase Variant Cloning#Pseudo Code|Pseudo Code]] can be used for this analysis.
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu