Write, autoreview, editor, reviewer
3,129
edits
mNo edit summary |
|||
Line 5: | Line 5: | ||
<math>\ket{+}=\frac{1}{\sqrt{2}}(\ket{0}+\ket{1}),</math></br> | <math>\ket{+}=\frac{1}{\sqrt{2}}(\ket{0}+\ket{1}),</math></br> | ||
<math>\ket{-}=\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})</math> | <math>\ket{-}=\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})</math> | ||
</br>X (NOT gate): <math>X\ket{0}\,\to\,\ \ket{1}, X\ket{1}\,\to\,\ \ket{0}, X\ket{+}\,\to\,\ \ket{+}, X\ket{-}\,\to\,\ -\ket{-}</math> | |||
</br>X (NOT gate): <math>X\ket{0}\,\to\,\ \ket{1}, | </br>Z (Phase gate): <math>Z\ket{+}\,\to\,\ \ket{-}, Z\ket{-}\,\to\,\ \ket{+}, Z\ket{0}\,\to\,\ \ket{0}, Z\ket{1}\,\to\,\ -\ket{1}</math></br> | ||
</br>Z (Phase gate): <math>Z\ket{+}\,\to\,\ \ket{-}, | |||
Thus, <math>\ket{0}</math>, <math>\ket{1}</math> are eigenstates of Z gate and <math>\ket{+}</math>, <math>\ket{-}</math> are eigenstates of X gate. | Thus, <math>\ket{0}</math>, <math>\ket{1}</math> are eigenstates of Z gate and <math>\ket{+}</math>, <math>\ket{-}</math> are eigenstates of X gate. | ||
</br> (Hadamard gate): <math>H\ket{0}\,\to\,\ \ket{+}</math> or <math>H\ket{1}\,\to\,\ \ket{-}</math> | </br> (Hadamard gate): <math>H\ket{0}\,\to\,\ \ket{+}</math> or <math>H\ket{1}\,\to\,\ \ket{-}</math> |