Classical Fully Homomorphic Encryption for Quantum Circuits: Difference between revisions

Jump to navigation Jump to search
m
Line 84: Line 84:
=== '''Stage 3''' Client’s Output Correction ===
=== '''Stage 3''' Client’s Output Correction ===
   
   
*'''Input:''' Classical output state, l {0,1}λ (or Quantum One time padded state in case of Quantum output), encrypted Pauli corrections ˜a,˜b
*Input: Classical output state, <math>l\in\{0,1\}^{\lambda}</math> (or Quantum One time padded state in case of Quantum output), encrypted Pauli corrections <math>\tilde{a},\tilde{b}</math>
*'''Output:''' Decrypted classical message x m (or final quantum output of computation ZzXx |ψi)
*Output: Decrypted classical message <math>x\oplus m</math> (or final quantum output of computation <math>Z^zX^x|\psi\rangle</math>)
''Decryption (FHE.Decsk)''
**'''Decryption (FHE.Dec<math>_{sk}</math>)'''
# Client decrypts ˜a,˜b using skL+1 to obtain a,b.
# Client decrypts <math>\tilde{a},\tilde{b}</math> using <math>sk_{L+1}</math> to obtain <math>a,b</math>.  
# She then uses the decrypted Pauli corrections to get the output XaZb |li, which can be represented as a l.<br/>She operates XaZb on quantum output to get C|ψi, in case of quantum output.
# She then uses the decrypted Pauli corrections to get the output <math>X^aZ^b|l\rangle</math>, which can be represented as <math>a\oplus l</math>.</br>She operates <math>X^aZ^b</math> on quantum output to get C<math>|\psi\rangle</math>, in case of quantum output.
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu