Classical Fully Homomorphic Encryption for Quantum Circuits: Difference between revisions

Jump to navigation Jump to search
m
Line 64: Line 64:
#Server creates a superposition state for the encrypted classical message and Pauli one time pads it using encrypted pad key. He applies the circuit on it as follows:</br>Let the Circuit be denoted by C and the gates be <math>c_i</math>
#Server creates a superposition state for the encrypted classical message and Pauli one time pads it using encrypted pad key. He applies the circuit on it as follows:</br>Let the Circuit be denoted by C and the gates be <math>c_i</math>
# For all i, <math>c_i</math> gate is applied on qubit l and the <math>l_{th}</math> bits of pad key <math>(\tilde {a}^{[l]},\tilde{b}^{[l]})</math> are updated to <math>(\tilde {a}'^{[l]},\tilde{b}'^{[l]})</math> as follows.  
# For all i, <math>c_i</math> gate is applied on qubit l and the <math>l_{th}</math> bits of pad key <math>(\tilde {a}^{[l]},\tilde{b}^{[l]})</math> are updated to <math>(\tilde {a}'^{[l]},\tilde{b}'^{[l]})</math> as follows.  
## If <math>c_i=\{P,H,CNOT\}</math>, a Clifford gate then<comment/>(<math>c_iX^{a^{[l]}}Z^{b^{[l]}}|\psi\rangle=X^{a'^{[l]}}Z^{b'^{[l]}}c_i|\psi\rangle</math>)
## If <math>c_i=\{P,H,CNOT\}</math>, a Clifford gate then<!--i-->(<math>c_iX^{a^{[l]}}Z^{b^{[l]}}|\psi\rangle=X^{a'^{[l]}}Z^{b'^{[l]}}c_i|\psi\rangle</math>)
### if <math>c_i=</math>H then <comment/>Hadamard Gate
### if <math>c_i=</math>H then <comment/>Hadamard Gate
###    if ci =P then //Pauli Gate<br/>(a˜[l],˜b[l]) → (a˜[l],a˜[l] ⊕˜b[l])
###    if ci =P then //Pauli Gate<br/>(a˜[l],˜b[l]) → (a˜[l],a˜[l] ⊕˜b[l])
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu