Classical Fully Homomorphic Encryption for Quantum Circuits: Difference between revisions

Jump to navigation Jump to search
m
Line 48: Line 48:
   
   
*Input: k, L, <math>L_c</math>, classical message m, ( and Quantum Input <math>\ket{\psi}</math> in case of quantum inputs)
*Input: k, L, <math>L_c</math>, classical message m, ( and Quantum Input <math>\ket{\psi}</math> in case of quantum inputs)
*Output: Homomorphic key sets <math>(pk_i,evk_i,sk_i, t_{sk_i})</math>, encrypted pad key <math>\tilde{a}, \tilde{b}</math> (and Quantum One time Padded Output State <math>X^aZ^b\ket{\psi}</math> in case of quantum output)
*Output: Homomorphic key sets <math>(pk_i,evk_i,sk_i, t_{sk_i})</math>, encrypted pad key <math>\tilde{a}, \tilde{b}</math> (and Quantum One time Padded Output State <math>X^aZ^b|\psi\rangle</math> in case of quantum output)
**''Key Generation (FHE.KeyGen(<math>1^{\lambda}, 1^L</math>))'
**''Key Generation (FHE.KeyGen(<math>1^{\lambda}, 1^L</math>))'
# For <math>1\leq i\leq L + 1</math>,  
# For <math>1\leq i\leq L + 1</math>,  
Line 55: Line 55:
# Client chooses pad key for each message bit <math>a,b\in\{0,1\}^{\lambda}</math>.
# Client chooses pad key for each message bit <math>a,b\in\{0,1\}^{\lambda}</math>.
# She then encrypts this pad key and sends it to the Server with the evaluation keys.</br>HE.Enc<math>_{pk_1}(a,b))</math>,
# She then encrypts this pad key and sends it to the Server with the evaluation keys.</br>HE.Enc<math>_{pk_1}(a,b))</math>,
# She sends encrypted classical message <math>X^aZ^b\ket{l}</math> which can be represented as the classical string <math>a\oplus m</math>. In case of quantum output Client uses pad key to hide her quantum state using QOTP (<math>X^aZ^b\ket{\psi}</math>) and then sends this hidden state to the Server along with the encrypted pad key.
# She sends encrypted classical message <math>X^aZ^b|l\rangle</math> which can be represented as the classical string <math>a\oplus m</math>. In case of quantum output Client uses pad key to hide her quantum state using QOTP (<math>X^aZ^b|\psi\rangle/math>) and then sends this hidden state to the Server along with the encrypted pad key.


=== '''Stage 2''' Server’s Computation ===
=== '''Stage 2''' Server’s Computation ===
Write, autoreview, editor, reviewer
3,129

edits

Navigation menu