Write, autoreview, editor, reviewer
3,129
edits
Line 93: | Line 93: | ||
*Both Sender and Receiver, each, compute <math>Q_X = \frac{1}{\text{size}Q} \sum_{i=1}^{n'}Q_i</math></br> | *Both Sender and Receiver, each, compute <math>Q_X = \frac{1}{\text{size}Q} \sum_{i=1}^{n'}Q_i</math></br> | ||
<u>'''Stage 4'''</u> Error correction | <u>'''Stage 4'''</u> Error correction | ||
*'<math>C(\cdot,\cdot)</math> is an error correction subroutine determined by the previously estimated value of <math>Q_Z</math> and with error parameters <math>\epsilon'_{\rm EC}</math> and <math>\epsilon_{\rm EC}</math> | |||
#Both Sender and Receiver run <math>C(A_1^{n'},B_1^{n'})</math>. | #Both Sender and Receiver run <math>C(A_1^{n'},B_1^{n'})</math>'. | ||
#Receiver obtains <math>\tilde{B}_1^{n'}</math> | #Receiver obtains <math>\tilde{B}_1^{n'}</math> | ||
<u>'''Stage 5'''</u> Privacy amplification | <u>'''Stage 5'''</u> Privacy amplification | ||
*'<math>PA(\cdot,\cdot)</math> is a privacy amplification subroutine determined by the size <math>\ell</math>, computed from Eq.(3), and with secrecy parameter <math>\epsilon_{\rm PA}</math>' | |||
#Sender and Receiver run $PA(A_1^{n'},\tilde{B}_1^{n'})$ and obtain secret keys $K_A, K_B$\; | #Sender and Receiver run $PA(A_1^{n'},\tilde{B}_1^{n'})$ and obtain secret keys $K_A, K_B$\; | ||
==Relevant Papers== | ==Relevant Papers== |