Editing Quantum Digital Signature

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 39: Line 39:
==Further Information==
==Further Information==
Unlike classical digital signature schemes which generalize a two party model, QDS protocols always study a three party model as transferability is not inherent and has to be proved in the quantum case. Given this situation, usually, the third party acts as the judge (a verififer) who would gain nothing out of cheating, and hence, cheating strategy is only studied for seller (repudiation) and buyer (forgery). Quantum digital signatures provide unconditional security, not relying on any computational assumption which is its basic advantage over the classical schemes. However, over time classical unconditionally secure digital signature schemes have been realized. These classical protocols take extra some assumptions like trusted omnipotent (one who distributes everyone signatures) or authenticated message broadcast. QDS does not require any such assumption. Yet, the low key rate could render QDS impractical over classical digital signature schemes. At the same time, there exist post quantum secure Digital signature schemes based on hash-key cryptography which cannot be broken by quantum computers.  Still, if someone requires a lifetime security without the above mentioned assumptions, QDS is the answer. Areas to improve QDS could be addressing the key rate and scalability of key length with length of message. Following are a few articles useful for those interested in a more detailed overview of QDS.   
Unlike classical digital signature schemes which generalize a two party model, QDS protocols always study a three party model as transferability is not inherent and has to be proved in the quantum case. Given this situation, usually, the third party acts as the judge (a verififer) who would gain nothing out of cheating, and hence, cheating strategy is only studied for seller (repudiation) and buyer (forgery). Quantum digital signatures provide unconditional security, not relying on any computational assumption which is its basic advantage over the classical schemes. However, over time classical unconditionally secure digital signature schemes have been realized. These classical protocols take extra some assumptions like trusted omnipotent (one who distributes everyone signatures) or authenticated message broadcast. QDS does not require any such assumption. Yet, the low key rate could render QDS impractical over classical digital signature schemes. At the same time, there exist post quantum secure Digital signature schemes based on hash-key cryptography which cannot be broken by quantum computers.  Still, if someone requires a lifetime security without the above mentioned assumptions, QDS is the answer. Areas to improve QDS could be addressing the key rate and scalability of key length with length of message. Following are a few articles useful for those interested in a more detailed overview of QDS.   
==Knowledge Graph==
{{graph}}


*Review Papers
*Review Papers
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: