Editing Prepare-and-Send Quantum Fully Homomorphic Encryption

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 40: Line 40:
*Server should be able to store entangled states, perform all Clifford and T gates.
*Server should be able to store entangled states, perform all Clifford and T gates.


==Knowledge Graph==
[[File:Prepare-and-Send Quantum Fully Homomorphic Encryption.png|center|Prepare-and-Send Quantum Fully Homomorphic Encryption]]
 
{{graph}}


==Properties ==
==Properties ==
Line 68: Line 66:
* <math>\tilde{x}^{[i]}</math>, resulting ciphertext one gets for an input <math>i^{th}</math> element of array x or <math>i^{th}</math> bit of key x after the Encrypting it with <math>i^{th}</math> of public key string, pk.
* <math>\tilde{x}^{[i]}</math>, resulting ciphertext one gets for an input <math>i^{th}</math> element of array x or <math>i^{th}</math> bit of key x after the Encrypting it with <math>i^{th}</math> of public key string, pk.


==Protocol Description==
== Pseudocode==
===Stage 1 Client’s Preparation===
===Stage 1 Client’s Preparation===
   
   
Line 111: Line 109:


=== Stage 2 Server’s Computation===
=== Stage 2 Server’s Computation===
'''Circuit's Evaluation (QFHE.Eval())'''
'''Circuit Evaluation (QFHE.Eval())'''
*'''Input:''' public key tuple <math>(pk_i)_{i = 0}^{L}</math>, Evaluation key tuple, Encrypted Pad key (<math>\{\tilde{a}^{[0]}...\tilde{a}^{[n]}</math>, <math>\tilde{b}^{[i]}...\tilde{b}^{[n]}\}</math>), QOTP Input State (<math> X^{a^{[1]}}Z^{b^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}\rho Z^{b^{[1]}}X^{a^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}</math>)</br>
*Input: public key tuple ( , Evaluation key tuple, Encrypted Pad key ({[0]...[n], ˜b[i]...˜b[n]}), QOTP Input State (Xa[1]Zb[1] ..... ⊗ Xa[n]Zb[n]ρZb[1]Xa[1] ..... ⊗ Xa[n]Zb[n])
*'''Output:''' QOTP Circuit Output State (<math> X^{a'^{[1]}}Z^{b'^{[1]}}\otimes.....\otimes X^{a'^{[k]}}Z^{b'^{[k]}}\rho' Z^{b'^{[1]}}X^{a'^{[1]}}\otimes.....\otimes X^{a'^{[k]}}Z^{b'^{[k]}}</math>), Corresponding Encrypted Pad key (<math>\tilde{a'},\tilde{b'}</math>)=(HE.Eval<math>_{evk_L}^\text{C}(\tilde{a}</math>),HE.Eval<math>_{evk_L}^\text{C}(\tilde{b}</math>))</br></br>
*Output: QOTP Circuit Output State (Xa0[1]Zb0[1].....⊗Xa0[k]Zb0[k]ρ0Zb0[1]Xa0[1].....⊗Xa0[k]Zb0[k]), Corresponding Encrypted Pad key (a˜0,b˜0)=(HE.EvalCevkL(),HE.EvalCevkL(˜b))
Let the Circuit be denoted by C and the gates be <math>c_i</math>
Let the Circuit be denoted by C and the gates be ci
# For all i, <math>c_i</math> gate is applied on qubit m and the <math>m_{th}</math> bits of pad key <math>(\tilde {a}^{[m]},\tilde{b}^{[m]})</math> are updated to <math>(\tilde {a}'^{[m]},\tilde{b}'^{[m]})</math> as follows.  
# For all i, ci gate is applied on qubit m and the mth bits of pad key (˜a[m],˜b[m]) are updated to
## If <math>c_i=\{P,H,CNOT\}</math>, a Clifford gate then <math>c_iX^{a^{[m]}}Z^{b^{[m]}}\psi=X^{a'^{[m]}}Z^{b'^{[m]}}c_i\psi</math>)
(a˜0[m],˜b0[m]) as follows.
### if <math>c_i=</math>H then: <math>(\tilde {a}^{[m]},\tilde{b}^{[m]})\rightarrow (\tilde{b}^{[m]},\tilde{a}^{[m]})</math> (Hadamard tranforms X gate into Z and Z into X)
## If ci = {P,H,CNOT}, a Clifford gate then (ciXa[m]Zb[m]ψ = Xa0[m]Zb0[m]ciψ)
### if <math>c_i=</math>P then: <math>(\tilde {a}^{[m]},\tilde{b}^{[m]})\rightarrow (\tilde{a}^{[m]},\tilde{a}^{[m]}\oplus\tilde{b}^{[m]})</math>
### if ci =H then{missing math} (Hadamard tranforms X gate into Z and Z into X)
### if <math>c_i=</math>CNOT with m as target bit and n as control bit then: <math>(\tilde {a}^{[m]},\tilde{b}^{[m]};\tilde {a}^{[n]},\tilde{b}^{[n]})\rightarrow (\tilde {a}^{[m]},\tilde{b}^{[m]}\oplus \tilde {b}^{[n]};\tilde{a}^{[m]}\oplus \tilde {a}^{[n]},\tilde{b}^{[n]})</math>
### if ci =P then<br/>{missing math}  
## If <math>c_i=T_j</math> gate then: <math> (T_jX^{a^{[m]}}Z^{b^{[m]}}\psi=P^{a^{[m]}}X^{a^{[m]}}Z^{b^{[m]}}T_j\psi)</math>
###if ci =CNOT with m as target bit and n as control bit then (CNOT)<br/>([m],˜b[m];˜a[n],˜b[n]) ([m],˜b[m] ⊕˜b[n];˜a[m] ⊕a˜[n],˜b[n])
###'''Generate Measurement''' M<math>\leftarrow</math> QFHE.GenMeasurement(<math>\tilde {a}^{[m]},\Gamma_{pk_{j+1}}(sk_j),evk_j)</math>
## If ci = Tj gate then (TjXa[m]Zb[m]ψ = Pa[m]Xa[m]Zb[m]Tjψ)
###'''Gadget Correction'''<math>(X^{a'^{[m]}}Z^{b'^{[m]}}T_j)\psi\leftarrow</math> QFHE.Measurement(M, <math>P^{a^{[m]}}X^{a^{[m]}}Z^{b^{[m]}}T_j\psi)</math>
### Generate Measurement<br/>M← QFHE.GenMeasurement(˜a[m],Γpkj+1(skj),evkj)<br/>
### Server gets measurement outcome x',z'
### Gadget Correction<br/>(Xa0[m]Zb0[m]Tj)ψ ← QFHE.Measurement(M, Pa[m]Xa[m]Zb[m]Tjψ);<br/> Server gets measurement outcome x’,z’
###'''Recryption''' Server recrypts one-pad key using pk<math>_{k+1}</math> (<math>\tilde {a''}^{[m]},\tilde{b''}^{[m]})\leftarrow</math> QFHE.Rec<math>_{pk_{k+1}}(\tilde {a}^{[m]},\tilde{b}^{[m]})</math>
### Recryption Server recrypts one-pad key using pkk+1<br/>QFHE.Recpkk+1([m],˜b[m]).<br/>
### Server updates the recrypted key using x,z and x',z'. (<math>\tilde {a'}^{[m]},\tilde{b'}^{[m]})\leftarrow (\tilde {a''}^{[m]},\tilde{b''}^{[m]}</math>)
##Server updates the recrypted key using x,z and x’,z’.
## Server sends the updated encryption and QOTP output state to Client.
## Server sends the updated encryption and QOTP output state to Client.
 
===Stage 3 Client’s Correction===
===Stage 3 Client’s Correction===
'''Decryption (QFHE.Dec())
'''Decryption (QFHE.Dec())
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: