Editing Prepare-and-Send Quantum Fully Homomorphic Encryption

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 93: Line 93:
<math>\sum_{a,b\epsilon\{0,1\}}\frac{1}{4}\rho(HE.Enc_{pk_0^{[i]}}(a^{[i]}),HE.Enc_{pk_0^{[i]}}(b^{[i]}))\otimes X^aZ^b\sigma Z^bX^a</math>
<math>\sum_{a,b\epsilon\{0,1\}}\frac{1}{4}\rho(HE.Enc_{pk_0^{[i]}}(a^{[i]}),HE.Enc_{pk_0^{[i]}}(b^{[i]}))\otimes X^aZ^b\sigma Z^bX^a</math>
#Client sends encryptions  (<math>\tilde{a}^{[i]},\tilde{b}^{[i]}</math>) and the quantum one time padded (QOTP) state<math> X^{a^{[1]}}Z^{b^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}\rho Z^{b^{[1]}}X^{a^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}} \forall i</math>,  to the Server with the evaluation keys and public keys.
#Client sends encryptions  (<math>\tilde{a}^{[i]},\tilde{b}^{[i]}</math>) and the quantum one time padded (QOTP) state<math> X^{a^{[1]}}Z^{b^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}\rho Z^{b^{[1]}}X^{a^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}} \forall i</math>,  to the Server with the evaluation keys and public keys.
'''Gadget Construction (<math>\text{QFHE.GenGadget}_{pk_{i+1}}(sk_i)</math>)'''
\ '''Gadget Construction (QFHE.GenGadgetpki+1(ski))'''
# Generate <math>4m</math> EPR pairs (<math>|\phi\rangle=\frac{1}{\sqrt{2}}(00+11))</math>, <math>\{(a_1,b_1),...,(a_{4m},b_{4m})\}</math>
# Generate 4m EPR pairs (  
# Choose <math>2m</math> pairs <math>\epsilon \{a_1, a_2,....,a_{4m}\}</math> using sk
# Choose 2m pairs using sk
## If <math>(sk=0)</math> then <math>\{(a_1,a_2),(a_2,a_3),...,(a_{4m-1},a_{4m})\}</math>
## If (sk = 0) then {(a1,a2),(a2,a3),...,(a4m−1,a4m)} ii. If (sk = 1) then {(a1,a3),(a2,a4),...,(a4m−2,a4m)}
## If <math>(sk=1)</math> then <math>\{(a_1,a_3),(a_2,a_4),...,(a_{4m-2},a_{4m})\}</math>
# For j=1 to 2m,
# For j=1 to 2m,  
## Choose p[j]  
## Choose p[j] <math>\epsilon_R \{0,1\}</math>
## Perform Bell Measurement on jth pair with an extra (P†)p operation, get outcomes (x[j],z[j])
## Perform Bell Measurement on <math>j^{th}</math> pair with an extra <math>(P^\dagger)^p</math> operation, get outcomes (x[j],z[j])
## Thus, new EPR pairs are{missing math}<br/>If (sk = 0) then {(b1,b2),(b2,b3),...,(b4m−1,b4m)}<br/>If (sk = 1) then {(b1,b3),(b2,b4),...,(b4m−2,b4m)}<br/>Denote the 2m entangled pairs be denoted by {(s1,t1),(s2,t2),...,(s2m,t2m)}, such that<br/>
## Thus, new EPR pairs are
###The classical information of gadget be g(sk)= ({(s1,t1),(s2,t2),...,(s2m,t2m),p,sk}.<br/>
### If <math>(sk=0)</math> then <math>\{(b_1,b_2),(b_2,b_3),...,(b_{4m-1},b_{4m})\}</math>
###The quantum state of gadget can be written as {missing math}  
### If <math>(sk=1)</math> then <math>\{(b_1,b_3),(b_2,b_4),...,(b_{4m-2},b_{4m})\}</math>
# Encrypt (x[j],z[j]), p[j] for all j and sk using pki+1. Resulting Gadget is the classical-quantum (CQ) state,{missing math}
## Denote the <math>2m</math> entangled pairs be denoted by <math>\{(s_1,t_1),(s_2,t_2),...,(s_{2m},t_{2m})\}</math>, such that
## The classical information of gadget be g(sk)<math>=(\{(s_1,t_1),(s_2,t_2),...,(s_{2m},t_{2m}),p,sk\}</math>.
## The quantum state of gadget can be written as <math>\gamma_{x,z}(g(sk))=\pi_{j=1}^mX^{x[i]}Z^{z[i]}(P^\dagger){p[i]}|\phi\rangle\langle\phi|_{s_jt_j}(P^\dagger){p[i]}Z^{z[i]}X^{x[i]}</math>
# Encrypt (x[j],z[j]), p[j] for all j and sk using <math>pk_{i+1}</math>. Resulting Gadget is the classical-quantum (CQ) state,
<math>\Gamma_{pk_{i+1}}(sk_i)=\rho(HE.Enc_{pk_{i+1}}(g(sk))\otimes \frac{1}{2^{2m}}\sum_{x,z\epsilon\{0,1\}^m}\rho(HE.Enc_{pk_{i+1}}(x,z)\otimes \gamma_{x,z}(g(sk))</math>


=== Stage 2 Server’s Computation===
=== Stage 2 Server’s Computation===
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: