Editing Prepare-and-Measure Certified Deletion

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 46: Line 46:


==Protocol Description==
==Protocol Description==
===Circuit 1: ''Key''===
The key generation circuit
'''Input ''': None
'''Output''': A key state <math>\rho \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}</math>
# Sample <math>\theta \gets \Theta</math>
# Sample <math> r|_{\tilde{\mathcal{I}}} \gets \{0,1\}^k</math> where <math>\tilde{\mathcal{I}} = \{i \in [m] | \theta_i = 1\}</math>
# Sample <math>u \gets \{0,1\}^n</math>
# Sample <math>d \gets \{0,1\}^\mu</math>
# Sample <math>e \gets \{0,1\}^\tau</math>
# Sample <math>H_{pa} \gets \mathfrak{H}_{pa}</math>
# Sample <math>H_{ec} \gets \mathfrak{H}_{ec}</math>
# Output <math>\rho = | r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| </math>
===Circuit 2: ''Enc''===
The encryption circuit
'''Input :''' A plaintext state <math>|\mathrm{msg}\rangle\langle\mathrm{msg}|</math> and a key state <math>| r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}</math>
'''Output:''' A ciphertext state <math>\rho \in \mathcal{D}(\mathcal{Q}(m+n+\tau+\mu))</math>
# Sample <math>r|_\mathcal{I} \gets \{0,1\}^s</math> where <math>\mathcal{I} = \{i \in [m]| \theta_i = 0 \}</math>
# Compute <math>x = H_{pa}(r|_\mathcal{I})</math> where <math>\mathcal{I} = \{i \in [m]| \theta_i = 0 \}</math>
# Compute <math>p = H_{ec}(r|_\mathcal{I}) \oplus d</math>
# Compute <math>q = \mathrm{synd}(r|_\mathcal{I})\oplus e</math>
# Output <math>\rho = |r^\theta\rangle\langle r^\theta |\otimes|\mathrm{msg}\oplus x \oplus u,p,q\rangle\langle \mathrm{msg}\oplus x \oplus u,p,q |</math>
===Circuit 3: ''Dec''===
The decryption circuit
'''Input :''' A key state <math>| r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}</math> and a ciphertext <math>\rho \otimes |c,p,q\rangle\langle c,p,q| \in \mathcal{D}(\mathcal{Q}(m + n + \mu + \tau)) </math>
'''Output:''' A plaintext state <math>\sigma \in \mathcal{D}(\mathcal{Q}(n))</math> and an error flag <math>\gamma \in \mathcal{D}(\mathcal{Q})</math>
# Compute <math>\rho^\prime = \mathrm{H}^\theta \rho \mathrm{H}^\theta</math>
# Measure <math>\rho^\prime</math> in the computational basis. Call the result <math>r</math>
# Compute <math>r^\prime = \mathrm{corr}(r|_\mathcal{I},q\oplus e)</math> where <math>\mathcal{I} = \{i \in [m]|\theta_i =0\}</math>
# Compute <math>p^\prime = H_{ec}(r^\prime) \oplus d </math>
# If <math>p \neq p^\prime</math>, then set <math>\gamma = |0\rangle\langle 0|</math>. Else, set <math>\gamma = |1\rangle\langle 1|</math>
# Compute <math>x^\prime = H_{pa}(r^\prime)</math>
# Output <math>\rho \otimes \gamma = |c\oplus x^\prime \oplus u \rangle \langle c\oplus x^\prime \oplus u| \otimes \gamma </math>
===Circuit 4: ''Del''===
The deletion circuit
'''Input :''' A ciphertext <math>\rho \otimes |c,p,q\rangle\langle c,p,q| \in \mathcal{D}(\mathcal{Q}(m+n+\mu+\tau))</math>
'''Output:''' A certificate string <math>\sigma \in \mathcal{D}(\mathcal{Q}(m))</math>
# Measure <math>\rho</math> in the Hadamard basis. Call the output y.
# Output <math>\sigma = |y\rangle\langle y|</math>
===Circuit 5: ''Ver''===
The verification circuit
'''Input :''' A key state <math>| r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}</math> and a certificate string <math>|y\rangle\langle y| \in \mathcal{D}(\mathcal{Q}(m))</math>
'''Output:''' A bit
# Compute <math>\hat y^\prime = \hat y|_\mathcal{\tilde{I}}</math> where <math> \mathcal{\tilde{I}} = \{i \in [m] | \theta_i = 1 \}</math>
# Compute <math>q = r|_\tilde{\mathcal{I}}</math>
# If <math>\omega(q\oplus \hat y^\prime) < k\delta</math>, output <math>1</math>. Else, output <math>0</math>.
<!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. -->
<!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. -->


Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)