Editing Practical Quantum Electronic Voting

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 6: Line 6:


<!--Tags: related pages or category -->
<!--Tags: related pages or category -->
'''Tags:''' [[:Category: Multi Party Protocols|Multi Party Protocols]], [[:Category: Quantum Enhanced Classical Functionality| Quantum Enhanced Classical Functionality]], [[:Category:Specific Task | Specific Task]]


==Requirements==
==Assumptions==
<!-- It describes the setting in which the protocol will be successful. -->
<!-- It describes the setting in which the protocol will be successful. -->
* Classical communication between the voting agents
* A multipartite entanglement source connected to each agent by a quantum channel. The source need not be trusted.
* Voting agents must be able to generate random numbers


==Outline==
==Outline==
Line 93: Line 89:
# The verifier generates random angles <math>\theta_j \in [0, \pi)</math> for all agents including themselves, such that the sum is a multiple of <math>\pi</math>. The angles are then sent out to all the agents.
# The verifier generates random angles <math>\theta_j \in [0, \pi)</math> for all agents including themselves, such that the sum is a multiple of <math>\pi</math>. The angles are then sent out to all the agents.
# Agent <math>j</math> measures in the basis <math>[|+_\theta\rangle,|-_\theta\rangle] = [\frac{1}{\sqrt{2}}(|0\rangle + e^{i\theta_j}|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - e^{i\theta_j}|1\rangle)]</math> and publicly announces the result <math>Y_j = \{0,1\}</math>
# Agent <math>j</math> measures in the basis <math>[|+_\theta\rangle,|-_\theta\rangle] = [\frac{1}{\sqrt{2}}(|0\rangle + e^{i\theta_j}|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - e^{i\theta_j}|1\rangle)]</math> and publicly announces the result <math>Y_j = \{0,1\}</math>
# The state passes the verification test when the following condition is satisfied: if the sum of the randomly chosen angles is an even multiple of <math>\pi</math>, there must be an even number of 1 outcomes for <math>Y_j</math> , and if the sum is an odd multiple of <math>\pi</math>, there must be an odd number of 1 outcomes for <math>Y_j : \bigoplus_j Y_j = \frac{1}{\pi}\sum_i\theta_i </math> (mod 2)
# The state passes the verification test when the following condition is satisfied: if the sum of the randomly chosen angles is an even multiple of <math>\pi</math>, there must be an even number of 1 outcomes for <math>Y_j</math> , and if the sum is an odd multiple of <math>\pi</math>, there must be an odd number of 1 outcomes for <math>Y_j : \bigoplus_j Y_j = \frac{1}{\pi}\sum_i\theta_i</math>


===Protocol 4 : Voting===
===Protocol 4 : Voting===
Line 124: Line 120:
# Repeat <math>\Sigma</math> times from step 4: each time repeat with <math>p_k</math> as new inputs
# Repeat <math>\Sigma</math> times from step 4: each time repeat with <math>p_k</math> as new inputs
# If at least once in the <math>\Sigma</math> repetitions for the various orderings <math>y = 1</math>, this is the output of the protocol, otherwise it is <math>y = 0</math>
# If at least once in the <math>\Sigma</math> repetitions for the various orderings <math>y = 1</math>, this is the output of the protocol, otherwise it is <math>y = 0</math>


===Protocol 6 : RandomBit===
===Protocol 6 : RandomBit===
Line 165: Line 162:


* ''Additional candidates'': The protocol described here only allows an election consisting of 2 candidates. This can be extended to more candidates by repeating the protocol multiple times in sequence. In particular, if there are K candidates, we can express each of them using log<math>_2</math>K bits and repeat the election as many times so that each vote set corresponds to one bit. This however does affect the correctness and privacy.
* ''Additional candidates'': The protocol described here only allows an election consisting of 2 candidates. This can be extended to more candidates by repeating the protocol multiple times in sequence. In particular, if there are K candidates, we can express each of them using log<math>_2</math>K bits and repeat the election as many times so that each vote set corresponds to one bit. This however does affect the correctness and privacy.
==Further Information==
==Further Information==
<!-- theoretical and experimental papers including requirements, security proof (important), which protocol does it implement, benchmark values... -->
<!-- theoretical and experimental papers including requirements, security proof (important), which protocol does it implement, benchmark values... -->
* Proofs of the protocol properties can be found in [https://arxiv.org/abs/2107.14719 Centrone et al. (2021)]
* Protocols 5-7 are classical anonymous protocols taken from [https://arxiv.org/abs/0706.2010 Broadbent and Tapp(2007)] and used in [https://arxiv.org/abs/1811.04729 Unnikrishnan et al.(2018)]
* Protocol 3 is the same as that of [https://arxiv.org/abs/1112.5064 Pappa et al.(2011)]


<div style='text-align: right;'>''*contributed by Chirag Wadhwa''</div>
==References==
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)