Editing Measurement-Only Universal Blind Quantum Computation

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 19: Line 19:
*''Server’s preparation'': This step remains the same as protocol 1a
*''Server’s preparation'': This step remains the same as protocol 1a
*'' Interaction and Client’s Computation'': Server prepares a Bell pair and sends one half of the Bell Pair to the Client. The Client informs the Server if she receives it or else if she doesn’t, Client asks Server to send it again. The client measures her share of entangled pair in a certain measurement basis depending on her MBQC pattern. The Server then entangles his share of Bell pair and qubit of the resource state using CZ gate which transfers the gate/ measurement operated by Client to the resource qubit. Then he measures the resource qubit in X basis and communicates his classical measurement outcome to the Client. Client records it and uses it to compute her final outcome.
*'' Interaction and Client’s Computation'': Server prepares a Bell pair and sends one half of the Bell Pair to the Client. The Client informs the Server if she receives it or else if she doesn’t, Client asks Server to send it again. The client measures her share of entangled pair in a certain measurement basis depending on her MBQC pattern. The Server then entangles his share of Bell pair and qubit of the resource state using CZ gate which transfers the gate/ measurement operated by Client to the resource qubit. Then he measures the resource qubit in X basis and communicates his classical measurement outcome to the Client. Client records it and uses it to compute her final outcome.
==Notations==
*(m,n,o) dimensions of cluster state. It could be 2D or 3D.


==Requirements==
==Requirements==
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: