Editing Full Quantum state tomography with Maximum Likelihood Estimation

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 10: Line 10:
Quantum state tomography attempts to characterize an unknown state ρ by measuring its components, usually in the Pauli basis or a different selected basis of measurement operators. Multiple identical copies of the quantum state are required as different measurements need to be performed on each copy. To fully reconstruct the density matrix for a mixed state, this method is used. This procedure can be used to completely characterize an unknown apparatus.
Quantum state tomography attempts to characterize an unknown state ρ by measuring its components, usually in the Pauli basis or a different selected basis of measurement operators. Multiple identical copies of the quantum state are required as different measurements need to be performed on each copy. To fully reconstruct the density matrix for a mixed state, this method is used. This procedure can be used to completely characterize an unknown apparatus.


When [[matrix inversion]] technique is used, some of the results produced can violate important basic properties such as positivity leading to a density matrix which is not valid. To avoid this problem, the maximum likelihood estimation of density matrices is employed. In practice, analytically calculating this maximally likely state is prohibitively difficult, and a numerical search is necessary. Three elements are required: a manifestly legal parametrization of a density matrix, a likelihood function which can be maximized, and a technique for numerically finding this maximum over a search of the density matrix’s parameters.
Instead of using [[matrix inversion]] technique, which can produce results that violate important basic properties such as positivity leading to a density matrix which is not valid, MLE is used. To avoid this problem, the maximum likelihood estimation of density matrices is employed. In practice, analytically calculating this maximally likely state is prohibitively difficult, and a numerical search is necessary. Three elements are required: a manifestly legal parametrization of a density matrix, a likelihood function which can be maximized, and a technique for numerically finding this maximum over a search of the density matrix’s parameters.


This method consists of the following steps:
This method consists of the following steps:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)