Fast Quantum Byzantine Agreement: Difference between revisions

No edit summary
Line 40: Line 40:


===Relevant Parameters===
===Relevant Parameters===
The number of players <math>n</math> and the number of failures <math>t</math> are previously introduced parameters of the agreement protocol. The Quantum Oblivious Common Coin protocol has a single parameter <math>k</math> (used in Verified Quantum Secret Sharing scheme), but it is unclear from the works [[Quantum Byzantine Agreement#References|(1), (3)]] how this influences the guarantees of the protocol. Also note that the fairness <math>p</math> of the Quantum Oblivious Common Coin is not a parameter, but rather a result of the specific implementation of the protocol. The global Byzantine Agreement protocol can then tolerate up to <math>t < \left \lfloor{pn}\right \rfloor </math>. The Quantum Oblivious Common Coin subroutine proposed by [[Quantum Byzantine Agreement#References|(3)]] has <math>p > \frac{1}{3}</math> (synchronous case, <math>p > \frac{1}{4}</math> asynchronous case).
The number of players <math>n</math> and the number of failures <math>t</math> are previously introduced parameters of the agreement protocol. The Quantum Oblivious Common Coin protocol has a single parameter <math>k</math> (used in the [[Verified Quantum Secret Sharing scheme]]), but it is unclear from the works [[Quantum Byzantine Agreement#References|(1), (3)]] how this influences the guarantees of the protocol. Also note that the fairness <math>p</math> of the Quantum Oblivious Common Coin is not a parameter, but rather a result of the specific implementation of the protocol. The global Byzantine Agreement protocol can then tolerate up to <math>t < \left \lfloor{pn}\right \rfloor </math>. The Quantum Oblivious Common Coin subroutine proposed by [[Quantum Byzantine Agreement#References|(3)]] has <math>p > \frac{1}{3}</math> (synchronous case, <math>p > \frac{1}{4}</math> asynchronous case).


==Hardware Requirements==
==Hardware Requirements==
Write
262

edits