Editing Fast Quantum Byzantine Agreement

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 14: Line 14:


==Outline==
==Outline==
[[File:ByzantineAgreementFig.PNG|frame|Schematic representation of an execution of a Byzantine Agreement protocol with <math>n = 5</math> nodes and <math>t = 1</math> Byzantine failure. The red bits indicate the input value of each node, whereas the green bit represents the output. The solution shown satisfies the ''agreement'' and ''validity'' properties. The quantum Byzantine agreement protocol in the strongest possible failure model requires <math>{O}(1)</math> expected number of rounds, whereas a classical lower bound of <math>{\Omega}\left(\sqrt{n / \log(n)}\right)</math> is known.]]
Here we will sketch the outline of the Fast Quantum Byzantine Agreement protocol by Ben-Or [[Quantum Byzantine Agreement#References|(3)]] that solves Byzantine Agreement using quantum resources. A very nice summary of this protocol is also presented in [[Quantum Byzantine Agreement#References|(1)]].
Here we will sketch the outline of the Fast Quantum Byzantine Agreement protocol by Ben-Or [[Quantum Byzantine Agreement#References|(3)]] that solves Byzantine Agreement using quantum resources. A very nice summary of this protocol is also presented in [[Quantum Byzantine Agreement#References|(1)]].
The main idea of this protocol is for each player to classically send its proposed input bit <math>b_i</math> to every other player in the network and then collaborate to determine what bit is proposed by a majority of honest players. In the case where failed players make this difficult, a 'good-enough' random coin is globally flipped  (using quantum resources, explained below), which is then classically post-processed to reach agreement among the honest parties. Let us make this more precise.
The main idea of this protocol is for each player to classically send its proposed input bit <math>b_i</math> to every other player in the network and then collaborate to determine what bit is proposed by a majority of honest players. In the case where failed players make this difficult, a 'good-enough' random coin is globally flipped  (using quantum resources, explained below), which is then classically post-processed to reach agreement among the honest parties. Let us make this more precise.
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: