Editing Fast Quantum Byzantine Agreement

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 54: Line 54:
* reaches ''agreement'' (each player outputs the same bit) under the ''validity'' condition (the agreement value was proposed by at least one player) and is guaranteed to ''terminate eventually'' (infinite executions occur almost never - i.e. have probability measure zero).
* reaches ''agreement'' (each player outputs the same bit) under the ''validity'' condition (the agreement value was proposed by at least one player) and is guaranteed to ''terminate eventually'' (infinite executions occur almost never - i.e. have probability measure zero).


The Quantum Oblivious Common Coin subroutine has a single parameter <math>k</math> (used in the [[Verifiable Quantum Secret Sharing scheme]]), but it is unclear from the works [[Quantum Byzantine Agreement#References|(1), (3)]] how the parameter <math>k</math> influences the guarantees of the protocol.  
The Quantum Oblivious Common Coin subroutine has a single parameter <math>k</math> (used in the [[Verifiable Quantum Secret Sharing scheme]]), but it is unclear from the works [[Quantum Byzantine Agreement#References|(1), (3)]] how the parameter <math>k</math> influences the guarantees of the protocol. Also note that the fairness <math>p</math> of the Quantum Oblivious Common Coin is not a parameter, but rather a result of the specific implementation of the protocol. The global Byzantine Agreement protocol can then tolerate up to <math>t < \left \lfloor{pn}\right \rfloor </math> failures. The Quantum Oblivious Common Coin subroutine proposed by [[Quantum Byzantine Agreement#References|(3)]] has <math>p > \frac{1}{3}</math> (synchronous case, <math>p > \frac{1}{4}</math> asynchronous case).
 
Also note that the fairness <math>p</math> of the Quantum Oblivious Common Coin is not a parameter, but rather a result of the specific implementation of the protocol. The global Byzantine Agreement protocol can then tolerate up to <math>t < \left \lfloor{pn}\right \rfloor </math> failures. The Quantum Oblivious Common Coin subroutine proposed by [[Quantum Byzantine Agreement#References|(3)]] has <math>p > 1/3</math> (synchronous case, <math>p > 1/4</math> asynchronous case).


==Protocol Description==
==Protocol Description==
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: