Editing Fast Quantum Byzantine Agreement

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 95: Line 95:
* The protocol [[Quantum Byzantine Agreement#References|(3)]] is based on the classical protocol of [[Quantum Byzantine Agreement#References|(7)]], where the classical Oblivious Common Coin is replaced by a quantum version. This Quantum Oblivious Common Coin is based on the Verifiable Quantum Secret Sharing Scheme presented in [[Quantum Byzantine Agreement#References|(4)]].  
* The protocol [[Quantum Byzantine Agreement#References|(3)]] is based on the classical protocol of [[Quantum Byzantine Agreement#References|(7)]], where the classical Oblivious Common Coin is replaced by a quantum version. This Quantum Oblivious Common Coin is based on the Verifiable Quantum Secret Sharing Scheme presented in [[Quantum Byzantine Agreement#References|(4)]].  
* The classical protocol of [[Quantum Byzantine Agreement#References|(7)]] also runs in constant expected time, but can only deal with limited-information adversaries. This means that the adversaries can not read communication between honest parties and read their internal state.  
* The classical protocol of [[Quantum Byzantine Agreement#References|(7)]] also runs in constant expected time, but can only deal with limited-information adversaries. This means that the adversaries can not read communication between honest parties and read their internal state.  
* The classical lower bound in the full-information Byzantine failure model of <math>\Omega\left(\sqrt{n / \log(n)}\right)</math> is proven in [[Quantum Byzantine Agreement#References|(6)]].
* The classical lower bound in the full-information Byzantine failure model of <math>\Omega\left(\sqrt{n / \log n}\right)</math> is proven in [[Quantum Byzantine Agreement#References|(6)]].
* The work [[Quantum Byzantine Agreement#References|(3)]] also provides a protocol in a weaker failure model known as fail-stop failures. Here the nodes will crash and stop working indefinitely (stop responding). Another protocol in the same model is presented in [[Quantum Byzantine Agreement#References|(2)]].
* The work [[Quantum Byzantine Agreement#References|(3)]] also provides a protocol in a weaker failure model known as fail-stop failures. Here the nodes will crash and stop working indefinitely (stop responding). Another protocol in the same model is presented in [[Quantum Byzantine Agreement#References|(2)]].
* Another weakened version of the problem, known as detectable byzantine agreement, is solved with quantum resources in [[Quantum Byzantine Agreement#References|(5)]] (and following works). In detectable byzantine agreement, the protocol is also allowed to abort (upon detecting failures) instead of reaching agreement.
* Another weakened version of the problem, known as detectable byzantine agreement, is solved with quantum resources in [[Quantum Byzantine Agreement#References|(5)]] (and following works). In detectable byzantine agreement, the protocol is also allowed to abort (upon detecting failures) instead of reaching agreement.
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: